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Abstract

It is well known that the use of native methods in Java
defeats Java’s guarantees of safety and security, which is
why the default policy of Java applets, for example, does
not allow loading non-local native code. However, there
is already a large amount of trusted native C/C++ code
that comprises a significant portion of the Java Develop-
ment Kit (JDK). We have carried out an empirical secu-
rity study on a portion of the native code in Sun’s JDK
1.6. By applying static analysis tools and manual inspec-
tion, we have identified in this security-critical code pre-
viously undiscovered bugs. Based on our study, we de-
scribe a taxonomy to classify bugs. Our taxonomy pro-
vides guidance to construction of automated and accurate
bug-finding tools. We also suggest systematic remedies
that can mediate the threats posed by the native code.

1 Introduction

Since its birth in the mid 90s, Java has grown to be one
of the most popular computing platforms. Recogniz-
ing Java’s importance, security researchers have scruti-
nized Java’s security from its early days (c.f., [9, 29, 33,
26]). Various vulnerabilities in the Java security model
have been identified and fixed; formal models of vari-
ous aspects of Java security have been proposed (e.g.,
[41, 14]), sometimes with machine-checked theorems
and proofs [23].

In this paper we examine a less-scrutinized aspect of
Java security: the native methods used by Java classes.
It is well known that once a Java application uses native
C/C++ methods through the Java Native Interface (JNI),
any security guarantees provided by Java might be in-
validated by the native methods. Figure 1 shows a con-
trived example. The Java class “Vulnerable” contains a
native method, which is realized by a C function. The C
function is susceptible to a buffer overflow as it performs
an unbounded string copy to a 512-byte buffer. Conse-

Java code

class Vulnerable {
//Declare a native method
private native void bcopy(byte[] arr);
public void byteCopy(byte[] arr) {

//Call the native method
bcopy(arr);

}
static {

System.loadLibrary("Vulnerable");
}

}

C code

#include <jni.h>
#include "Vulnerable.h"
JNIEXPORT void JNICALL Java_Vulnerable_bcopy

(JNIEnv *env, jobject obj, jobject arr)
{

char buffer[512];
jbyte *carr;
carr = (*env)->GetByteArrayElements

(env,arr,0);
//Unbounded string copy to a local buffer
strcpy(buffer, carr);
(*env)->ReleaseByteArrayElements

(env,arr,carr,0);
}

Figure 1: Vulnerable JNI Code.

quently, an attacker can craft malicious inputs to the pub-
lic Java byteCopy() method, and overtake the JVM.

Due to the fundamental insecurity of native C/C++
code, the default policy of Java applets, for example,
does not allow loading non-local native code. Nonethe-
less, there is already a large amount of trusted native
code that comprises a significant portion of the Java De-
velopment Kit (JDK). For instance, the classes under
java.util.zip in Sun’s JDK are just wrappers that invoke
the popular Zlib C library. In JDK 1.6, there are over
800,000 lines of C/C++ code. Over the time, the size



of C/C++ code has been on the increase: JDK 1.4.2 has
500,000 lines; JDK 1.5 has 700,000 lines; and JDK 1.6
has 800,000 lines. Any vulnerability in this trusted na-
tive code can compromise the security of the JVM. Sev-
eral vulnerabilities have already been discovered in this
code [34, 38, 37].

Since the native code in the JDK is critical to Java
security, examining and ensuring its security is of great
practical value. As a first step toward this goal, we have
carried out an empirical security study of this large and
security-critical code. Our research makes the following
contributions:

• This is the first systematic security study of the na-
tive code in Sun’s JDK, a security-critical and ubiq-
uitous piece of software. A few sporadic bug reports
exist, but none have scrutinized this aspect of Java
security.

• We discovered previously unknown security-critical
bugs (59 in total). By removing them, the over-
all Java security will be strengthened. Furthermore,
we describe a taxonomy of bugs based on our study
(Section 3). New bug patterns that arise in the con-
text of the JNI are discussed and analyzed. Our tax-
onomy provides guidance to construction of scal-
able and accurate bug-finding tools.

• We will propose remedies (Section 4) to mediate the
threats posed by the native code, with various trade-
offs among security, performance, and effort. We
also discuss limitations of current approaches and
point out future directions.

2 Overview of the JDK’s native code and
our approach to characterizing bug pat-
terns

The JNI is Java’s mechanism for interfacing with native
C/C++ code. Programmers use the native modifier to
declare native methods in Java classes (e.g. the bcopy
method in Figure 1 is declared as a native method). Once
declared, native methods can be invoked in Java in the
same way as how ordinary Java methods are invoked.
Programmers then provide in C or C++ implementation
of the declared native methods. The implementation can
use various API functions provided by the JNI interface
to cooperate with the Java side. Through the API func-
tions, native methods can inspect, modify, and create
Java objects, invoke Java methods, catch and throw Java
exceptions, and so on.

In the source directories share/native,
solaris/native, and windows/native of
Sun’s JDK 1.6 (v6u2), there are over 800,000 lines of

C/C++ code (counted using wc). The native code in
these directories implements the native methods declared
in the JDK classes. The native code in the directory
share/native is shared across platforms, while the
code in solaris/native and windows/native
is platform dependent. The majority of the native code
in the JDK is in the C language; around 700,000 lines
are in C, while the rest are in C++. In our following
discussion, we will mostly refer to the C code in the
JDK. All of our discussion, unless specially noted,
applies to the C++ code as well.

The 800k lines of native code can be conceptually di-
vided into two parts: library code and interface code.
The library code is the C code that belongs to a com-
mon C library. For example, the code under share/
native/java/util/zip/zlib-1.1.3 is from
Zlib 1.1.3. The interface code implements Java native
methods, and glues Java with C libraries through the JNI.
For example, the C code in native/java/util/
zip/Deflater.c implements the native methods in
the java.util.zip.Deflater class, and glues
Java with the Zlib C library.

Our approach to characterizing bug patterns. Given
the large amount of trusted native code in the JDK, bugs
are likely to exist. Our ultimate goal is to build highly
automatic tools that can identify bugs in the JDK’s na-
tive code. However, as no general methodology exists to
identify all bugs accurately in a program, we believe that
the important first step is to collect empirical evidence,
and characterize relevant bug patterns. Only after this
due diligence, we can select the right techniques to take
advantage of the domain knowledge of the JDK and the
JNI, and construct effective bug-finding tools.

In the first step, we intend to cover as many bug pat-
terns as we can. We decided to scan the source code
using off-the-shelf static analysis tools and also simple
tools (scripts and scanners) built by us. Although these
tools are inaccurate, their scanning results are fairly com-
plete and thus enable us to compile enough evidence to
conclude the characteristics of bug patterns. Next, we
discuss the tools used in our study:

• To scan the common bug patterns inside C code,
such as buffer overflows, integer overflows, and race
conditions, we used a combination of Splint [11],
Cigital’s ITS4 [39], and Flawfinder [42]. We chose
a combination of these tools, rather than a single
one, because their strengths complement one an-
other. For example, Splint performs full parsing
and can flag many incompatible type casts. ITS4
and Flawfinder can flag time-of-check-to-time-of-
use (TOCTTOU) flaws, among others.

• Some bug patterns in the JDK’s native code are



particular to the Java Native Interface (JNI) and
we cannot use existing tools to scan for errors in
these patterns. We have built simple tools, includ-
ing grep-based scripts and scanners implemented in
CIL [31], to search for bugs in these patterns.

• For the list of warnings produced by the static anal-
ysis tools, we manually inspected the source code
to identify true bugs. To help the manual inspec-
tion, we used the GNU GLOBAL Source Code Tag
System [17] to build a database of tags in the JDK
source code, and used htags to generate HTML files
for the source code. This made source-code navi-
gation much easier. For example, with one click,
we can find all places where a particular function is
invoked.

Although the foregoing approach is sufficient for char-
acterizing bug patterns, it is clear the tools will not be
scalable to cover all 800,000 lines of native code in the
JDK. In Section 4, we will discuss techniques that make a
significant progress toward providing safety to the JDK’s
native code.

Target directories. Limited by our time to per-
form manual inspection, we focused our study on the
code under the directories share/native/java and
solaris/native/java. We will call these directo-
ries the target directories in the following text. The target
directories include approximately 38,000 lines of C code,
which implement the native methods in the java.*
classes.

3 Taxonomy of bugs in the JDK’s native
code

We now present a collection of bug patterns in the JDK’s
native code. Some of these patterns are well known, such
as buffer overflows, but we will discuss them in the con-
text of the JDK. Some bug patterns are due to the mis-
match between Java’s programming model and C’s, and
thus are unique in the context.

Table 1 shows a summary of the results of our security
study. For each bug pattern, the table shows the number
of bugs we identified. We include a bug in the table when
two conditions hold. First, there must be a programming
error in the native code. For example, the C code in
Figure 1 has a programming error, which performs an
unbounded string copy. The second condition is that an
attacker must be able to trigger the programming error.
For the example in Figure 1, the attacker can trigger the
error of unbounded string copy by passing malicious data
to the Vulnerable class.

Table 1 also classifies whether a bug pattern is security
critical. We define that a bug pattern is security critical
if, by exploiting bugs in the pattern, an attacker can take
over the JVM, gain authorized privileges, or crash the
JVM (a denial-of-service attack). A security-critical bug
is a vulnerability.

Finally, Table 1 shows the static analysis tools we used
to identify the bugs in a bug pattern, and the section that
describes detailed findings on the bug pattern. In each
section, we will show representative examples, but refer
readers to the appendix for a full list of the bugs we iden-
tified. We will also suggest ad-hoc fixes for some bug
patterns, but defer discussions of more systematic reme-
dies to the next section.

Not included in the table are the false positive rates of
the static analysis tools; they will be presented when we
discuss static analysis as a remedy in the next section.

3.1 Unexpected control flows due to mis-
handling Exceptions

The JNI interface provides API functions such as Throw
and ThrowNew for raising Java exceptions. By throw-
ing an exception, a native method can notify the JVM
of errors. However, there is a mismatch between Java’s
exception-handling mechanism and the JNI’s. In Java,
when an exception occurs, the JVM automatically trans-
fers the control to the nearest enclosing try/catch state-
ment that matches the exception type. In contrast, an
exception raised through the JNI does not immediately
disrupt the native method execution, and only after the
native method finishes execution will the JVM mech-
anism for exceptions start to take over. Therefore,
JNI programmers must explicitly implement the control
flow after an exception has occurred, by either imme-
diately returning to Java or checking and clearing the
exception explicitly using JNI API functions such as
ExceptionOccurred and ExceptionClear.

Because Java and the JNI handle exceptions differ-
ently, it is easy for JNI programmers to make mistakes.
Figure 2 presents a contrived example that shows how
mishandling of exceptions may lead to vulnerabilities.
At first sight, the strcpy from the incoming Java ar-
ray to a local buffer is safe: there is a bounds check
before the copy, and when the check fails, an exception
is thrown. However, since the exception does not dis-
rupt the control flow, the strcpy will always be exe-
cuted and may result in an unbounded string copy. This
example shows that mishandling exceptions creates un-
expected control-flow paths where dangerous operations
might happen.

The fix for the example in Figure 2 is simple—just
put a return statement after the throwing-exception state-
ment. However, it becomes complicated when function



BUG PATTERNS ERRORS SECURITY
CRITICAL

STATIC TOOLS USED SECTION

Unexpected control flows due to
mishandling exceptions

11 Y grep-based scripts 3.1

C pointers as Java integers 38 N Our scanner
(implemented in CIL)

3.2

Race conditions in file accesses 3 Y ITS4, Flawfinder 3.3

Buffer overflows 5* Y
Splint, ITS4,
Flawfinder 3.4

Mem. management
flaws

C mem. 1 N Splint 3.5Java mem. 28 N grep-based scripts
Insufficient error
checking

JNI APIs 35 Y grep-based scripts 3.6misc. 5 Y Splint
TOTAL 126 59

*One buffer-overflow flaw is not in the target directory.

Table 1: A summary of the bugs we identified in the target directories.

void Java_Vulnerable_bcopy (JNIEnv *env, jobject obj, jbyteArray jarr) {
char buffer[512];

if ((*env)->GetArrayLength(env, jarr) > 512) {
JNU_ThrowArrayIndexOutOfBoundsException(env, 0);

}

//Get a pointer to the Java array, then copy the Java array to a local buffer
jbyte *carr = (*env)->GetByteArrayElements(env, jarr, NULL);
strcpy(buffer, carr);
(*env)->ReleaseByteArrayElements(env,arr,carr,0);

}

Figure 2: An example of mishandling JNI exceptions

calls are involved. Imagine a C function, say f, invokes
another C function, say g, and the function g throws an
exception when an error occurs. The f function has to
explicitly deal with two cases of calling g: the success-
ful case, and the exceptional case. Mishandling it may
result in the same error as the one in Figure 2. It becomes
much more complicated when the C function f invokes
a Java method. The JVM mechanism for exceptions will
not take effect until the C function returns, even for the
exceptions raised in the Java method.

We developed a grep-based script to search for all
places where an exception is explicitly thrown. Of the
337 hits in the target directories, we found 11 places
where the control flows for exceptions are implemented
incorrectly. A representative example from solaris/
native/java/lang/UNIXProcess md.c is
shown in Figure 3. The macro NEW invokes the
function xmalloc, which in turn invokes malloc
to allocate a specified amount of memory. If the

malloc function returns null, the NEW throws a
JNU ThrowOutOfMemoryError exception. How-
ever, the exception does not disrupt the control flow,
and as a result the pathv variable in splitPath gets
null. The subsequent “pathv[count] = NULL”
will crash the JVM.

We classify this bug pattern as being security criti-
cal because dangerous operations in unexpected control-
flow paths may enable an attacker to crash or take over
the JVM.

3.2 C pointers as Java integers

Programs that use the JNI often need to pass C point-
ers through Java. Due to differences between Java’s type
system and C’s, it is difficult (and sometimes impossi-
ble) for Java to assign types to C pointer values. The
commonly used pattern in JNI programming is to cast C
pointers to Java integers, and pass the resulting integers.



static void* xmalloc(JNIEnv *env, size_t size) {
void *p = malloc(size);
if (p == NULL) JNU_ThrowOutOfMemoryError(env, NULL);
return p;

}

#define NEW(type, n) ((type *) xmalloc(env, (n) * sizeof(type)))

static const char * const * splitPath(JNIEnv *env, const char *path) {
...
pathv = NEW(char*, count+1);
pathv[count] = NULL;
...

}

Figure 3: An excerpt from solaris/native/java/lang/UNIXProcess md.c. Even when xmalloc returns NULL,
“pathv[count] = NULL” will be executed.

The pattern is used, for example, in the class
java.util.zip.Deflater. The Deflater class
supports compression using the Zlib C library. The Zlib
library maintains a C structure (z stream) for stor-
ing the state information of a compression data stream.
A Deflater object holds a pointer to the z stream
structure, so that when the object calls Zlib the second
time, the state information can be recovered through the
pointer. As it is impossible for Java to declare the pointer
as having the C type “z stream *”, the C code casts it
into an integer before passing it to Java:

typedef struct z_stream_s {...} z_stream;

jlong Java_java_util_zip_Deflater_init
( ... ) {

z_stream *strm =
calloc(1, sizeof(z_stream));

... //initialize strm
return (jlong) strm; //cast it to an integer

}

Whenever Java needs to access the compression
stream, it passes to C the integer. C code then casts the
integer back to a z stream pointer, through which the
state information of the stream can be retrieved or up-
dated.

From Java’s perspective, integers that represent C
pointers are just ordinary Java integers. The pattern of
treating C pointers as Java integers is unsafe if an at-
tacker can inject to the C side arbitrary integer values that
will be interpreted as pointers. Greenfieldboyce and Fos-
ter [18] examined the Gimp Toolkit (GTK) and discov-
ered seven places where the injection of arbitrary integers
is possible. For example, the native method setFocus
in the GTK (shown below) has an integer parameter that
represents a window pointer. Since the method is de-
clared as a public method, an attacker can invoke it with

an arbitrary integer value, which may corrupt memory
and result in JVM crashes.

class GUILib {
public native static void
setFocus (int windowPtr);

...
}

We have built a custom scanner that searches for dan-
gerous type casts from integers to pointers. The scanner
is implemented in the CIL framework [31] as a CIL fea-
ture. We found 38 native methods that accept Java inte-
gers as arguments and then cast the integers to pointers.
Compared to the GTK, the JDK’s protection of these in-
tegers is safer. First, the native methods are all declared
as private methods. An attacker cannot invoke them arbi-
trarily. Second, the Java integers that represent C point-
ers are stored in private fields.

If we assume Java’s access control rules on private
fields and methods are strictly enforced, then the JDK’s
protection on the integers is sufficient. However, with
the Java reflection API, a Java program can at runtime
change the private fields that store the C pointers, or in-
voke private methods.

If an attacker can use the Java reflection API, then he
can read and write arbitrary memory locations by ex-
ploiting the pattern of C pointers as Java integers. For ex-
ample, the getAdler native method (shown below) in
the java.util.zip.Deflater class accepts a Java
long, casts it to a pointer to the z stream struct, and re-
turns the adler field in the struct. If an attacker invokes
it with the number that equals a target memory address
minus the offset of the adler field, then he can read the
value at the target address.



jint Java_java_util_zip_Deflater_getAdler
(..., jlong strm) {

return ((z_stream *)strm)->adler;
}

In a similar vein, the attacker can write to any memory
location with his data through the setDictionary
method in the Deflater class; the setDictionary
method updates a z stream structure with user-
supplied data.

Although the default security policy when running un-
trusted Java code does not allow the Java reflection, we
believe that passing C pointers as Java integers is dan-
gerous, for the following reason. For a program in pure
Java, an attacker can violate the access-control policy of
the Java program (e.g. reading private fields) using the
Java reflection, but the program remains type safe, which
implies no reading/writing arbitrary memory locations.
However, with the Java reflection and passing C point-
ers as Java integers through the JNI, an attacker could
violate type safety by reading/writing arbitrary memory
locations (shown by previous examples). We believe
the privilege escalation from using the Java reflection to
reading/writing arbitrary memory locations is a violation
of the Java security model.

Proposed fixes. We recommend a fix based on an indi-
rection table of pointers, similar to the OS file-descriptor
table. The C side uses the indirection table to store point-
ers and passes table IDs, not pointers, to Java. When C
gets the table IDs back from Java, it checks the validity
of the IDs before carrying out dangerous operations. If
bogus IDs were passed to C, the validity-checking step
would catch it.

3.3 Race conditions in file accesses
Time-of-check-to-time-of-use (TOCTTOU) bugs refer to
race conditions in which “a program checks for a par-
ticular characteristic of an object, and then takes some
action that assumes the characteristic still holds when in
fact it does not” [3]. Bishop and Dilger [3] identified a
category of TOCTTOU bugs in file accesses. Such flaws
occur, for example, when a program checks the access
privilege of a file through a file path name and then use
the file through the same file path name. Between the
check and the use, if an attacker can change the file asso-
ciated with the file path name, then the program may be
fooled to access privileged files that the attacker cannot
access otherwise.

We used ITS4 and Flawfinder to scan for file-access
race conditions in the JDK. We identified three places
in the target directories where file-access race condi-
tions might occur. An example in solaris/native/

java/io/UnixFileSystem md.c is the race win-
dow between stat (line 144) and chmod (line 236). If
the file in question were in a directory writable by the at-
tacker, then during the race window he can link to that
file any target file. The chmod at line 236 will then
change the protection mode of the target file.

Besides the three race conditions we identified, we
also discovered that the implementation of all the native
methods in the class java.io.UnixFileSystem is
based on path names, instead of file descriptors. For ex-
ample, the checkAccess method checks whether the
file or directory denoted by a given path name may be ac-
cessed; the setPermission method set on or off the
access permission of the file or directory denoted by a
given path name. The class java.io.File, a client of
java.io.UnixFileSystem, uses checkAccess
in methods such as canRead to check access per-
missions of a file path name stored in a field of
java.io.File. It also uses setPermission in
methods such as setReadable to set access permis-
sions of the file path name. As a result, a Java pro-
gram that uses java.io.File may have race con-
ditions, if it first invokes canRead, and then invokes
setReadable.

File-access race conditions are most relevant in a
multi-user system, which is not a typical environment
of using Java. Nevertheless, Java has been and will be
used in a diverse set of scenarios (e.g., Java programs are
run as root in the Java Authorization Toolkit [1]). Fix-
ing the TOCTTOU flaws is usually straightforward. For
example, the race window created by stat followed by
chmod can be fixed by first opening the file to get its file
descriptor, and then using fstat and fchmod on the
file descriptor.

3.4 Buffer overflows

By automatically inserting array bounds checks, Java
provides built-in protection against buffer overflows. If
a program is developed in pure Java, we are rest assured
that no buffer will be overflowed. However, since the
implementation of the JDK contains C/C++ code, it is
possible for an attacker to pass Java applications unex-
pected values, which flow to the C code in the JDK and
trigger a buffer overflow.

Buffer overflows occur when a C program does not
perform sufficient bounds checking. Native methods that
use the JNI often need to check integers from Java for
negative values. Since Java supports only signed integer
types, the JNI maps all Java integer types to signed in-
teger types in C. To use these signed integers safely for
indices, sizes, and loop counters that should never have
negative values, explicit checks are necessary. Missing
checks for negative values may crash the JVM, as past



bug reports have shown [20, 38].
We employed ITS4, Splint, and Flawfinder to scan the

C files under the target directories for buffer-overflow
bugs. ITS4 and Flawfinder scan for and report danger-
ous operations such as strcpy, memcpy, and fscanf.
Splint reports many type-incompatibility warnings. For
example, it issues a warning when a signed integer is
used as an unsigned integer, which is helpful to identify
missing checks for negative values. With the help of the
static analysis tools, we discovered seven places where
there are insufficient bounds checks. Two of them are in
C functions that are not used by Java, and do not pose a
security threat to the JVM. The rest pose real threats to
the JVM: one bug is due to a missing width specifier in
the format-string argument of fscanf; three bugs are
due to possible integer overflows that may subsequently
lead to buffer overflows; one bug is due to insufficient
bounds checking of a public native method.1

3.5 Bugs related to dynamic memory man-
agement

The C code in the JDK needs to manage two memory re-
gions, the C memory region and the Java memory region.
It may mismanage both memory regions.

Dynamic memory management in C. Unlike Java,
the C language provides programmers the power of
manually managing memory through functions such as
malloc and free. This power, which seems indis-
pensable in system programming, has always been a con-
stant source of programming defects, and consequently
security vulnerabilities. Due to manual memory man-
agement, the C code in the JDK may suffer from a range
of flaws, including dereferencing dangling pointers, mul-
tiple frees, and memory leaks. These defects may make
the JVM unstable and vulnerable.

We employed Splint to identify defects related to
memory management in the target directories. We man-
ually inspected a large number of warnings and found
only one case of memory leaks.

Managing Java memory through the JNI. Through
the JNI, native methods can manage the Java mem-
ory. Certain JNI APIs manage Java memory in a style
similar to malloc and free. For instance, to ac-
cess a Java integer array, a native method first invokes
GetIntArrayElements to have a pointer to the in-
teger array. When the method finishes with the array, it
is supposed to invoke ReleaseIntArrayElements
to release the pointer. These JNI API functions en-
able the C method to communicate with Java’s Garbage
Collector (GC). GetIntArrayElements informs the

GC of the creation of a C pointer to the Java array;
the GC should not garbage collect or move the array.
ReleaseIntArrayElements informs the GC that
the C pointer is no longer needed.

This style of manual memory management is er-
ror prone and has similar problems to the ones of
malloc/free. For example, using the C pointer after
ReleaseIntArrayElements is similar to using a
dangling pointer, since the Java GC may have already
moved or garbage collected the array. Failure to invoke
ReleaseIntArrayElements will make the GC
retain the array indefinitely. Other pairs of functions that
are similar to Get/ReleaseIntArrayElements
include Get/ReleaseStringUTFChars, New/
DeleteGlobalRef, and Push/PopLocalFrame.

We developed grep-based scripts to pattern match
places where relevant JNI API functions such as
ReleaseIntArrayElements are used. In the
target directories, we discovered one place where
ReleaseStringUTFChars is not invoked (in one
control-flow path) to release a Java String reference.
There are also 27 places where JNI global references are
not released.2 Although these bugs are not security criti-
cal, they result in memory leaks and are worth fixing.

3.6 Insufficient error checking
One of the most common mistakes when writing C code
is missing checks for error cases. Since the C language
does not have an exception mechanism, programmers are
required to perform explicit checks after many function
calls that may return special values for reporting errors.
For instance, the standard malloc function returns a
null value if the required space cannot be allocated. The
correct usage of the malloc function should first check
the return value for nonnull before using it. We encoun-
tered two places where the C code in the target directo-
ries forgets the check for the malloc function.

In addition, many JNI API functions use null values
to report errors. For example, the GetFieldID func-
tion returns null when the operation fails.3 The following
code crashes Sun’s JVM, when fid gets null.

//Get the field ID
fid=(*env)->

GetFieldID(env, cls, "x", "I");
//Get the int field
int i=(*env)->GetIntField(env, obj, fid);

The above code should first check fid to be nonnull,
before invoking GetIntField.

We developed grep-based scripts to scan for JNI API
functions whose return values should be checked. We
inspected suspicious JNI API calls to check whether their
return values are checked before used. In total, we found



JNI API FUNCTIONS # OF VIOLATIONS

GetFieldID/GetStaticFieldID 5
GetMethodID/GetStaticMethodID 3
GetStringUTFChars 4
FindClass 11
New〈Type〉Array 1
NewGlobalRef 11
Total 35

Table 2: Insufficient error checking. For each JNI API,
the table lists the number of cases in the target directories
where there is no checking of the return value of the API
before using the value.

35 violations. Table 2 summarizes the results in the target
directories. Note that the table does not include those JNI
API functions for which we did not find violations. We
consider insufficient error checking to be security critical
because they may result in JVM crashes.

3.7 Other flaws resulting from misusing
the JNI

For completeness, we next mention other bug patterns in
the native code of the JDK. For these patterns, we either
have not found any bugs in the target directories, or have
not successfully applied static analysis tools.

Type misuses. The JNI maps Java types to C/C++
types and performs necessary conversions when data go
through the interface. Java primitive types and Java ref-
erence types are mapped differently. Java primitive types
are mapped directly. For example, the Java type int
is mapped to the native type jint (declared as 32-bit
integers in jni.h). Java objects of reference types are
mapped to opaque references, which are pointers to in-
ternal data structures in the JVM. The exact layout of the
internal data structures is hidden from programmers. In
C, all opaque references have the type jobject. Na-
tive C/C++ code manipulates these references through
JNI API functions.

Since native C code treats all references to Java objects
as having one single type4, C compilers cannot distin-
guish references to objects of different Java classes. As a
result, an object of Java class Amay be wrongly passed to
a JNI API function that actually requires an object of Java
class B. Type checking in C compilers cannot catch this
kind of mistakes, which usually results in JVM crashes.
More serious is the case that a native method invokes a
Java method with objects of wrong classes. A type con-
fusion like this could have serious consequences, as past
research on Java security has shown [33, 6].

Another case of type misuses in the JNI is that pro-
grammers may invoke wrong JNI API functions. For ex-
ample, programmers may use wrong JNI array APIs, as
the JNI provides different APIs for accessing arrays of
different types. There are GetByteArrayElements,
GetIntArrayElements, and others. Calling wrong
JNI API functions may result in improper memory ac-
cesses or JVM crashes.

JSaffire [16] by Furr and Foster is a tool that can check
type misuses in the JNI code. We did not incorporate
JSaffire into our step of characterizing bug patterns for
two reasons. First, this category of bugs has been well
characterized in previous work [16, 35]. Second, we sus-
pect type-misuse bugs in the JDK’s native code would be
rare. Type-misuse bugs usually result in immediate pro-
gram crashes and are easy to trigger with a small amount
of test code. As the JDK has been extensively “tested”
by its users, we believe that most of the type-misuse bugs
have been fixed. This is partly confirmed by our experi-
ment. We constructed scripts to search for the most com-
mon cases of type-misuse bugs, such as passing wrong
classes to JNI API functions and confusing jclass with
jobject [25, ch 10.3]; we did not find any such kinds of
bugs in the target directories.

Deadlocks. The JNI includes pairs of functions
Get/ReleaseStringCritical and Get/
ReleasePrimitiveArrayCritical, which
introduce a critical region. Inside the region, the C code
cannot issue blocking calls or allocate new Java objects.
Otherwise, the JVM may deadlock. We inspected all
such critical regions in the target directories and did not
find any risk of deadlock.

Violating the Java security model. The JNI does not
enforce access controls on classes, fields, and methods
that are expressed in the Java language through the use of
modifiers such as private. Therefore, a native method
can read private fields of any Java object. Furthermore,
a native method can violate the Java sandbox security
model, by performing dangerous operations that would
otherwise be blocked by the JVM. We have not checked
the JDK’s native code for these kinds of violations.

4 Remedies, limitations, and directions

The native code inside the JDK is critical to Java secu-
rity. As we and others have demonstrated, after more
than a decade, there are still flaws remaining in this crit-
ical code. Once identified, these flaws are generally not
hard to fix. However, the perpetual mode of patching is
less than satisfying. Next we discuss more systematic
approaches, their limitations, and future directions.



4.1 Static analysis

Static analysis is useful for isolating and eliminating se-
curity bugs, as demonstrated by the number of bugs we
identified with the help of static analysis tools. On the
other hand, there are a few limitations of the current gen-
eration of static analysis tools that prevent us from using
them to cover all 800k lines of native code in the JDK.

Limitations of static analysis tools. The tools we used
issued a large number of warnings that are false positives.
For each of the three off-the-shelf tools, the following
table lists the number of warnings it issued, the number
of true errors, and its false-positive rate.

Off-the-Shelf Tools Warnings Errors FP rates
ITS4 -c1 241 6 97.5%
Flawfinder 297 5 98.3%
Splint5 3532 7 99.8%

Our own scripts and scanners perform slightly better,
but the false-positive rates are still high; see Table 3.

Due to the large number of false positives, we had to
manually sift through many cases—the principal reason
why we examined only a portion of the native code in
the JDK. In addition to false positives, static analysis
tools may have false negatives. For example, of the four
buffer-overflow bugs identified in the target directories,
ITS4 and Flawfinder missed one and Splint missed two.

Another limitation of the static analysis tools is that
they analyze C code alone, without considering how the
Java side interacts with the C side. This is a severe lim-
itation because the interface code between Java classes
and C libraries is where most bugs arise. In fact, all
the bugs we identified are in the interface code. This
is not only because the two libraries in the target direc-
tories (namely, Zlib and fdlibm) have been used in many
other applications besides the JDK and are mature, but
because programmers tend to make wrong assumptions
of the Java and C sides when writing interface code.

When analyzing the interface code, considering both
sides of Java and C can significantly increase analysis
precision and reduce false positives and negatives. To
illustrate, we use the java.util.zip.Deflater
class as an example. The public deflate method
shown in Figure 4 accepts a buffer, an offset, and a
length from users, and then invokes the native method
deflateBytes. To be safe, the deflate method
checks the bounds of the offset and the length parameters
before invoking the native method deflateBytes.

For the example in Figure 4, a static analysis that
analyzes only C code has to make either an optimistic
or a pessimistic assumption about whether the Java

side has performed the bounds checking. If the anal-
ysis makes the optimistic assumption, it would pro-
duce false negatives if the Java side had forgotten to
check the bounds. If it makes the pessimistic assump-
tion, it would have to flag any access to the b buffer
through the offset and the length as a possible error.
For example, the SetByteArrayRegion operation in
deflateBytes would be flagged as a possible out-of-
bounds array write, even though that is impossible given
the Java context. Bug finders usually make pessimistic
assumptions for the purpose of minimizing false neg-
atives. For instance, Splint flags “malloc(len)” in
deflateBytes and complains about an incompatible
type cast from the signed integer len to an unsigned in-
teger expected by malloc—it does not know that the
Java side invokes deflateBytes only with positive
lengths.

The necessity of inter-language analysis is also sharply
enforced by our experience of manual inspection. For
many warnings, we inspected both their C and Java con-
texts to decide if they are true errors. To give a rough idea
of how many warnings cannot be eliminated as false pos-
itives without taking the Java context into account, we
examined the 139 incompatible-type-cast warnings that
Splint issued for the C code under java.util.zip
and found that in 22 cases the Java context must be in-
spected.

Future directions of improving static analysis tools.
Some of the limitations we mentioned are particular to
the tools we used, and are not fundamental to static anal-
ysis. The off-the-shelf tools used in this study are known
for having high false-positive rates. ITS4, Flawfinder,
and our own tools are based on simple syntactic pat-
tern matching; Splint performs certain type-based anal-
yses, but is still a coarse-grained tool. We believe false-
positives rates can be significantly reduced through ad-
vanced static techniques such as software model check-
ing (e.g., MOPS [4], CMC [30], SLAM [2]), and Ban-
dera [7]), type qualifiers [13, 18], theorem proving tech-
niques (e.g., ESC/Java [12]), and others.

To better analyze interface code, we advocate inter-
language analysis across Java and C. Most existing tools
are limited a priori to code written in a single lan-
guage. Few inter-language analyses across Java and C
exist. JSaffire [16] is an exception, but can only check
for type misuses of data from Java to C. Our previous
work, ILEA [36], enables general inter-language analy-
sis across Java and C. The basic approach of ILEA is to
perform a partial compilation from C code to a specifi-
cation based on Java so that an existing Java analysis can
understand the behavior of the C code through the Java
specification. ILEA extends Java with a set of simple, yet
powerful approximation primitives, which enable auto-



BUG PATTERNS OUR TOOLS WARNINGS ERRORS FP RATES

Unexpected control flows due to
mishandling exceptions

grep-based scripts 337 11 96.7%

C pointers as Java integers scanner built in CIL 46 38 17.4%
Mem. management flaws (Java Mem.) grep-based scripts 43 28 34.9%
Insufficient error checking (JNI APIs) grep-based scripts 230 35 84.8%

Table 3: False-positive rates of our tools.

java.util.zip.Deflater

public class Deflater {
public synchronized int deflate(byte[] b, int off, int len) {
...
if (off < 0 || len < 0 || off > b.length - len) {
throw new ArrayIndexOutOfBoundsException();

}
return deflateBytes(b, off, len);

}

private native int deflateBytes(byte[] b, int off, int len);
}

C implementation of deflateBytes()

jint Java_java_util_zip_Deflater_deflateBytes
(JNIEnv *env, jobject this, jarray b, jint off, jint len) {

...
out_buf = (jbyte *) malloc(len);
...
(*env)->SetByteArrayRegion(env, b, off, len - strm->avail_out, out_buf);
...

}

Figure 4: An example illustrating the necessity of inter-language analysis

matic extraction of partial Java specifications of C code.
Through ILEA, any existing analysis on Java in principle
can be extended to also cover C code. In practice, how-
ever, ILEA is restricted by its compilation precision, and
also by the effectiveness of the Java analysis.

We plan to combine advanced static analysis tech-
niques with the ideas in ILEA to build high-precision,
inter-language tools that hunt for bugs in the JDK’s na-
tive code. We are particularly interested in taint analysis
and software model checking. Static taint analysis (e.g.,
[27]) can track attacker-controllable data that flow from
Java to C. Software model checking can check for viola-
tions of many patterns we have discussed as they can be
formalized as state machines. We plan to investigate C
model checkers such as MOPS [4] and CMC [30] and ex-
tend them to perform inter-language checking using the
ideas in ILEA.

Finally, we believe it is important to formalize the

soundness proofs of static analysis tools. Formal study
helps understand the assumptions, clarify guarantees,
and reduce false negatives. In the context of the JNI, for-
mal study is complicated by the lack of formal semantics
of the C language. It is perhaps helpful to focus instead
on a well-defined subset of C such as Cminor [24].

4.2 Dynamic Mechanisms

Static analysis analyzes programs to find implementation
errors before the programs are run. An alternative is to
use dynamic mechanisms to prevent or isolate errors dur-
ing runtime. Dynamic mechanisms can take advantage
of richer runtime information to check certain properties
easily, although sacrificing some performance.

Our previous work, SafeJNI [35], is a mostly dynamic
mechanism for ensuring the safety of JNI-based pro-
grams such as the JDK. It first leverages CCured [32]



to provide internal memory safety to the C code. CCured
analyzes C programs to identify places where memory
safety might be violated and then inserts runtime checks
to ensure safety. SafeJNI also inserts runtime checks at
the boundary between Java and C to make sure that the C
code accesses the Java state safely and cooperates with
Java’s garbage collector. SafeJNI incurs a performance
overhead of 14–119% on a set of microbenchmark pro-
grams, and incurs 63% on Zlib.

Table 4 summarizes how SafeJNI protects Java from
bugs in the native code in terms of the various bug
patterns discussed before. SafeJNI protects Java from
most kinds of bugs in the native code. Its main lim-
itation is that it does not protect against concurrency-
related bugs (race conditions and deadlocks); we be-
lieve concurrency-related bugs should be best addressed
through advanced static analysis techniques.

Future directions. We believe that SafeJNI is a
promising direction to prevent errors in the native code.
We plan to reduce its overhead in two ways. First, static
analysis techniques can reduce a large number of dy-
namic checks. For example, many runtime type checking
can be eliminated if we can statically track the classes of
Java objects in C, similar to what JSaffire does [15].

Second, we plan to explore other more efficient ways
of providing internal safety to C code than CCured. Our
experiment showed that CCured accounted for most of
the performance overhead in SafeJNI (46% out of 63%
in Zlib). The relatively large performance slowdown is
because CCured guarantees every C buffer is well pro-
tected. For instance, given the code below

int *p = (int *) malloc (1024);

*(p+i) = 3;

CCured in general will insert the runtime check “0 <= i
< 1024” before “*(p+i) = 3”.

If the safety policy is to protect the JVM state from
being accidentally destroyed by C code, then Software
Fault Isolation (SFI [40, 28]) of the C code is sufficient.
Whenever the JVM starts to execute a native method, it
can first allocate a trunk of memory, say 16MB, and hand
the memory region to the native method. A SFI-based
scheme can then guarantee that any access of the C mem-
ory will not escape the memory region, and thus will not
destroy the JVM state.

Schemes based on SFI can isolate errors within native
components, but does not prevent exploits of vulnerabil-
ities inside the components. XFI [10], on the other hand,
can prevent exploits of a large number of vulnerabilities
by enforcing properties such as control-flow integrity. In
addition, it works on assembly code and is not restricted
to a source programming language.

4.3 Reimplementation in safer languages

It can be argued that the C language is intrinsically un-
safe and should not be used in the JDK. In the long run,
we believe the C code in the JDK should be reimple-
mented in safer languages. The obvious choice is Java.
This is a feasible approach, as there exist implementa-
tions in pure Java of many programs originally written
in C, such as the Zlib library [21]. GNU Classpath, an
open-source replacement of Sun’s JDK, takes this ap-
proach seriously; one of their long-term goals is to be-
come JNI independent by implementing everything in
Java [5]. On the flip side, rewriting the existing 800 kloc
of C/C++ code in Java will require a substantial invest-
ment, and will likely have a negative impact on execution
speed.

Another idea is to use a safe C variant to port the
C code. Cyclone [22] is a reasonable choice. Since
the syntax and semantics of Cyclone are close to C,
porting C code to Cyclone should take less time than,
say, a complete rewrite in Java. However, as Cyclone
has a strong type system and uses region-based mem-
ory management, converting to type-checkable Cyclone
code will not be a trivial effort. Furthermore, this ap-
proach alone can guarantee only the internal safety of C
code. The C code can still misuse the JNI interface.

Since the JNI interface is extraordinarily verbose and
error prone, one approach to reducing flaws is to use a
better interface between Java and C. A notable exam-
ple is Jeannie [19], which allows programmers to write
mixed Java and C code in a single file. The Jeannie com-
piler then translates mixed Java/C code into code that
uses the JNI. Although in Jeannie it is still possible to
write unsafe code, Jeannie helps programmers reduce er-
rors. For example, in Jeannie programmers can raise Java
exceptions directly, thus avoiding the control-flow prob-
lem when raising JNI exceptions (Section 3.1).

5 Conclusion

The large amount of native code in the JDK is a time
bomb in Java security. Our study has examined a range of
bug patterns in the JDK’s native code, from well-known
buffer overflows to new patterns such as unexpected con-
trol flow paths due to mishandling JNI exceptions. Given
the importance of Java, it is imperative to develop better,
inter-language static and dynamic mechanisms to medi-
ate the threats posed by the native code.

Through our study, we hope to send the message that
the native code should be kept at a minimum in the JDK.
On the contrary, the native code in Sun’s JDK has been
on the increase. The native code is outside of the Java
security model and defeats Java’s main goals: safety, se-
curity, and platform independence. In the long run, most



BUG PATTERNS HOW SAFEJNI WORKS AGAINST THE BUGS?
Unexpected control flows due to
mishandling exceptions

Through SafeJNI’s dynamic checks on pending exceptions.

Race conditions in file accesses N/A
Buffer overflows Through CCured and SafeJNI’s static pointer kind system.
Mem. management
flaws

C mem. Through CCured.
Java mem. Through SafeJNI’s memory management scheme.

Insufficient error
checking

JNI APIs Through SafeJNI’s dynamic checks.
misc. Through CCured.

Type misuses Through SafeJNI’s dynamic checks.
Deadlocks N/A
Violating the Java security
model

Partly addressed through SafeJNI’s dynamic checks on access-
control rules on Java fields/methods.

Table 4: How SafeJNI protects the JVM from bugs?

of the native code should be ported to safer languages
such as Java.
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Notes
1This bug is not in the target directory and was found in a casual

inspection.
2Global references are never released in the code we examined, al-

though the JNI manual explicitly mentioned the necessity of freeing
global references [25, ch5.2.3].

3It fails if the specified field cannot be found, or if the class initial-
izer fails, or if the system runs out of memory [25].

4In C++, certain Java built-in classes have corresponding C++
classes in the JNI (predefined in jni.h). References to objects of other
Java classes, including all user-defined classes, are still mapped to
jobject.

5With the options “+posixlib -paramuse -redef -noeffect -varuse
-exportlocal -incondefs -booltype jboolean -booltrue JNI TRUE -
boolfalse JNI FALSE -predboolint -compdef”.



A Appendix

Contained in this section are vulnerabilities, and programming errors discovered in JDK v6u2.
Our description will be in the following format:

PATH/
filename, line numbers, relevant code excerpt
A short description of the vulnerability.

Multiple entries with similar descriptions are merged into one entry.

A.1 Unexpected control flows due to mishandling exceptions
SHARE/NATIVE/JAVA/NIO/
Bits.c, 61-62, GETCRITICAL(bytes,env,src); memcpy((void *)dstAddr,bytes+srcPos,size);
The macro GETCRITICAL is defined as follows (at line 38):

#define GETCRITICAL(bytes, env, obj) { \
bytes = (*env)->GetPrimitiveArrayCritical(env, obj, NULL); \
if (bytes == NULL) \

JNU_ThrowInternalError(env, "Unable to get array"); \
}

When GetPrimitiveArrayCritical returns null, a JNI exception is thrown. However, the exception does not
disrupt the control flow, and the subsequent memcpy will still be executed. Performing a memcpy to a null value
results in a JVM crash. Similar instances appear at lines 81, 109, 144, 179, 214, 249, and 284.

SOLARIS/NATIVE/JAVA/LANG/
UNIXProcess md.c, 138-139, pathv = NEW(char*, count+1); pathv[count] = NULL;
The macro NEW invokes the function xmalloc, which in turn invokes malloc to allocate a specified amount of
memory. If the malloc function returns null, the NEW throws a JNU ThrowOutOfMemoryError exception.
However, the exception does not disrupt the control flow, and as a result the pathv gets null. The subsequent
“pathv[count] = NULL” will crash the JVM. Similar instances appear at lines 148 and 327. On the other hand,
the NEW macro is used correctly at lines 492 and 499 (with an explicit nonnull checking on the value returned by the
macro).

A.2 C Pointers As Java Integers
The following Java methods cast Java integers to C pointers. The Java integers are either directly passed in as argu-
ments to the methods (in italic fonts below), or are read from integer fields of Java classes.

java.lang.ClassLoader.NativeLibrary.unload()
java.lang.ClassLoader.NativeLibrary.find(String name)
java.util.nio.Bits.copyFromByteArray(Object src, long srcPos, long dstAddr,
long length)
java.util.nio.Bits.copyToByteArray(long srcAddr, Object dst, long dstPos, long
length)
java.util.nio.Bits.copyFromShortArray(Object src, long srcPos, long dstAddr,
long length)
java.util.nio.Bits.copyToShortArray(long srcAddr, Object dst, long dstPos,
long length)
java.util.nio.Bits.copyFromIntArray(Object src, long srcPos, long dstAddr,
long length)
java.util.nio.Bits.copyToIntArray(long srcAddr, Object dst, long dstPos, long
length)



java.util.nio.Bits.copyFromLongArray(Object src, long srcPos, long dstAddr,
long length)
java.util.nio.Bits.copyToLongArray(long srcAddr, Object dst, long dstPos, long
length)
java.util.zip.Deflater.setDictionary(long strm, byte[] b, int off,int len)
java.util.zip.Deflater.DeflateBytes(byte[] b, int off, int len)
java.util.zip.Deflater.getAdler(long strm)
java.util.zip.Deflater.getBytesRead(long strm)
java.util.zip.Deflater.getBytesWritten(long strm)
java.util.zip.Deflater.reset(long strm)
java.util.zip.Deflater.end(long strm)
java.util.zip.Inflater.setDictionary(long strm, byte[] b, int off, int len)
java.util.zip.Inflater.InflateBytes(byte[] b, int off, int len)
java.util.zip.Inflater.getAdler(long strm)
java.util.zip.Inflater.getBytesRead(long strm)
java.util.zip.Inflater.getBytesWritten(long strm)
java.util.zip.Inflater.reset(long strm)
java.util.zip.Inflater.end(long strm)
java.util.zip.ZipEntry.initFields(long jzentry)
java.util.zip.ZipFile.getTotal(long jzfile)
java.util.zip.ZipFile.close(long jzfile)
java.util.zip.ZipFile.getEntry(long jzfile, String name, boolean addSlash)
java.util.zip.ZipFile.freeEntry(long jzfile, long jzentry)
java.util.zip.ZipFile.getNextEntry(long jzfile, int i)
java.util.zip.ZipFile.getMethod(long jzentry)
java.util.zip.ZipFile.getCSize(long jzentry)
java.util.zip.ZipFile.getSize(long jzentry)
java.util.zip.ZipFile.read(long jzfile, long jzentry, long pos, byte[] b, int
off, int len)
java.util.zip.ZipFile.getZipMessage(long jzfile)
java.nio.MappedByteBuffer.isLoaded0(long address, long length)
java.nio.MappedByteBuffer.load0(long address, long length, int pageSize)
java.nio.MappedByteBuffer.force0(long address, long length)

A.3 Race conditions in file accesses
SOLARIS/NATIVE/JAVA/IO/
UnixFileSystem md.c, 144, stat(path, &sb)
UnixFileSystem md.c, 236, chmod(path, mode)
The public native method setPermission of the Java class java.io.UnixFileSystem allows a Java program
to set on or set off the access permission of a named file. If the file were in a directory writable by the attacker, between
the stat (144) and the chmod (236) he can link to that file any target file (which the Java program must be allowed to
chmod). At line 236, the protection mode of the target file is then set according to the protection mode of the original
file and the input parameters of the setPermission method.

SOLARIS/NATIVE/JAVA/IO/
UnixFileSystem md.c, 144, stat(path, &sb)
UnixFileSystem md.c, 504, chmod(path, mode & ...)
Similar to the previous one.

SOLARIS/NATIVE/JAVA/IO/
UnixFileSystem md.c, 460, stat(path, &sb)
UnixFileSystem md.c, 471, stat(path, &sb)
UnixFileSystem md.c, 485, utimes(path, tv)



The public native method setLastModifiedTime sets the last-modified time of a named file. If the file were in
a directory writable by the attacker, between the stat (line 460 in Solaris, 471 in Linux) and the utimes (485) he
can link to that file any target file (on which the Java program must be allowed to perform utimes). At line 485, the
last modified time of the target file is set according to the input parameter time to the setLastModifiedTime
method.

A.4 Buffer Overflow Vulnerabilities
SOLARIS/NATIVE/JAVA/NET/
net util md.c, 544, fscanf(f, ‘‘... %s’’, ..., ifname)
The format specifier %s does not specify a width, allowing a string of arbitrary length to be written into ifname, a
32-byte local buffer. If the length of the last entry on any line in the file /proc/net/if inet6 is greater than 32
bytes, the buffer ifname is overflowed. The last entry on lines in /proc/net/if inet6 represents a network
interface name. Experimentally we have verified that a network interface name (in Linux) can go beyond 32 bytes.

SHARE/NATIVE/JAVA/UTIL/ZIP/
zip util.c, 536, entries = zip->entries = calloc(total, sizeof(entries[0]));
The variable total holds the number of central directory entries in a ZIP file. Comments in
zip util.c claim that Sun’s ZIP implementation supports 231 entries. However, when total is 231,
total*(sizeof(entries[0])) will overflow. Consequently, the calloc operation will allocate less space
than expected, and a buffer overflow follows.

SOLARIS/NATIVE/JAVA/LANG/
UNIXProcess md.c, 359, if (filelen + dirlen + 1 >= PATH MAX) ...
The variable dirlen gets its value from the environment variable PATH. If it is large enough such that filelen +
dirlen + 1 exceeds the maximum value of an integer, then an integer overflow occurs. The integer overflow may
make the bounds check pass and result in a buffer overflow in the two strcpy operations on lines 365 and 366.

SOLARIS/NATIVE/JAVA/LANG/
java props md.c, 80, char *temp = malloc(strlen(envstring) + strlen(current) +
2)
The variable current gets its value from an environment variable. If it is large enough such that
strlen(envstring) + strlen(current) + 2 exceeds the maximum value of an integer, then the
malloc will not allocate enough space, and the subsequent strcpy and strcat on lines 81–85 will overflow the
temp buffer.

SHARE/NATIVE/SUN/AWT/IMAGE/
awt ImageRep.c, 128, Java sun awt image ImageRepresentation setBytePixels(...)
This is a public native method without any checking on input arguments. We have experimentally verified that calling
this method with pixelStride=1, and sufficiently large h*scansize will crash the JVM. This vulnerability is
not in the target directory.

A.4.1 Insufficient Bounds Checks

The programming errors in this section are not vulnerabilities; they are in the functions that are not used by the JDK.
We include them for completeness.

SHARE/NATIVE/JAVA/UTIL/ZIP/ZLIB-1.1.3/
minigzip.c, 203, strcpy(outfile, file);
In the function file compress, the strcpy copies the string file to outfile, a fixed-size local buffer (1024
bytes). The file string comes from the main function, and can be of arbitrary length. This programming error was
independently discovered in the context of Python 2.5 [8]. It is not a vulnerability in the JDK as the JDK does not use
the functions in minigzip.c.



SHARE/NATIVE/JAVA/UTIL/ZIP/ZLIB-1.1.3/
minigzip.c, 234, strcpy(buf, file)
This programming error is similar to the previous one. A strcpy copies an arbitrary-length file to a fixed-size
buffer buf.

A.5 Memory Leaks
SOLARIS/NATIVE/JAVA/NET/
NetworkInterface.c, 898, addrP = (netaddr *)malloc(sizeof(netaddr));
Two control-flow paths (line 941 and 997) forget to free the addrP buffer.

SOLARIS/NATIVE/JAVA/NET/
NetworkInterface.c, 157, name utf = (*env)->GetStringUTFChars(env, name,
&isCopy);
The resulting memory pointed to by name utf is not released in the control flow path at line 162. Line 162 is
reached when the result of calling enumInterfaces(env) is null.

A.5.1 Global References

When a JNI global reference is used, two kinds of errors are possible: failure to release the global reference using
DeleteGlobalRef, and failure to check for a null return value from NewGlobalRef. Each following entry
contains bugs related to memory leaks, or insufficient error checking, or both. For conciseness, we include bugs of
insufficient error checking for global references in this section instead of section A.6.

SHARE/NATIVE/JAVA/IO/
ObjectStreamClass.c, 13, static jclass noSuchMethodErrCl;
There is no error checking of the return value of NewGlobalRef on line 29 and no release of the global reference.
Similar instances: line 100 and 101 in solaris/native/java/net/Inet4Address.c; line 100, 101, and 102 in solaris/native/-
java/net/Inet6Address.c; line 68, 79, 80, 81, and 82 in
solaris/native/java/net/NetworkInterface.c.

SHARE/NATIVE/JAVA/NET/
InetAddress.c, 17, jclass ia class
There is error checking for the return value of NewGlobalRef, but no release of the global reference. Similar in-
stances: line 16 in Inet4Address.c; line 17 in Inet6Address.c; line 82, 96, and 121 in net util.c; line 666 and 735 in
solaris/native/java/net/net util md.c; line 73, 93, 1167, 1479, 1483, 1587, and 1591 in solaris/native/java/net/Plain-
DatagramSocketImpl.c; line 230 in solaris/native/java/net/PlainSocketImpl.c.

A.6 Insufficient Error Checking
This section notes cases in which insufficient error checking can have harmful results.

SOLARIS/NATIVE/JAVA/LANG/
java props md.c, 80, char *temp = malloc(...);
No check on the return value of malloc. When the malloc returns null, the subsequent code strcpy(temp,
name) (line 81) will crash the JVM.

SOLARIS/NATIVE/JAVA/NET/
NetworkInterface.c, 1143, ret = (struct sockaddr*) malloc(...);
No check on the return value of malloc. A subsequent memcpy (line 1144) uses ret as the destination.

SOLARIS/NATIVE/JAVA/UTIL/
FileSystemPreferences.c, 23, const char *fname = JNU GetStringPlatformChars();



The variable fname is the result of JNU GetStringPlatformChars and may be null. It is used subsequently
in “chmod(fname, ...)” (line 25).

A similar instance appears in solaris/native/java/util/FileSystemPreferences.c (line 43).

SOLARIS/NATIVE/JAVA/NET/
PlainDataGramSocketImpl.c, 600, iaObj = NET SockaddrToInetAddress(...);
The result of NET SockaddrToInetAddress can be null and is stored in iaObj. The variable iaObj is
used in a subsequent call to GetIntField. There is no check before the call, and if iaObj is null, the call to
GetIntField will crash the JVM.

SOLARIS/NATIVE/JAVA/NET/
Inet4AddressImpl.c, 138, ni iaaddressID = (*env)->GetFieldID(...);
The JNI API GetFieldID may return null. The variable ni iaaddressID is used at line 214 as the field ID
to SetIntField. With a null field ID, SetIntField will fail to change the value of the corresponding field.
Similar instances appear at line 140 in Inet4AddressImpl.c, and line 146, 148 and 149 in Inet6AddressImpl.c.

SOLARIS/NATIVE/JAVA/NET/
Inet4AddressImpl.c, 137, ni ia4ctrID = (*env)->GetMethodID();
The JNI API GetMethodID may return null. The variable ni ia4ctrID is used at line 209 as the method ID to
NewObject. With a null method ID, the call to NewObject will crash the JVM. Similar instances appear at line
144 and 145 in Inet6AddressImpl.c.

SOLARIS/NATIVE/JAVA/NET/
NetworkInterface.c, 157, const char* name utf = (*env)->GetStringUTFChars(...);
The JNI API GetStringUTFChars may return null. The variable name utf is subsequently used at line 179
as a parameter to strcmp. Similar instances appear at line 1095, 1406 and 1444 in NetworkInterface.c.

SOLARIS/NATIVE/JAVA/LANG/
ProcessEnvironment md.c, 31, FindClass(env, ‘‘[B’’)
The result of FindClass is stored in jclass byteArrCls without checking for null and is used as the class
parameter to NewObjectArray (line 39). Similar instances: line 133 and 135 in Inet4AddressImpl.c; line 115, 127,
129, 131 and 133 in NetworkInterface.c; line 138, 140, and 142 in Inet6AddressImpl.c.

SOLARIS/NATIVE/JAVA/UTIL/
FileSystemPreferences.c, 81, javaResult = (*env)->NewIntArray(env,2);
The result of NewIntArray can be null and is stored in javaResult. The variable javaResult is used in a
subsequent call to SetIntArrayRegion. There is no check before the call, and if javaResult is null, the call
will crash the JVM.


