
Indistinguishable nodes: automatically infer and cluster

together devices with similar functionality

• N = all nodes in the network
• Set of firewalls: fw = {fw1,fw2}

• Set of non-firewalls: nf = N – fw

• Summarized path: src nf* fw nf* dst

Topology restrictions:

• Summarized path: src .* dst

Motivation: networks require near-constant

configuration changes [1]
• 20% of network operators make changes once per day

• 80% of network operators are concerned changes will

introduce problems with existing functionality

• Operators need a way to vet changes at a high level

Goals:

• Mine succinct summaries of configuration changes

• Understand low-level configuration changes: infer

high-level intention

• Verify operational updates: confirm compliance with
intention and network policy

Path Change Summaries:

A configuration change can encompass many tasks (re-

routing traffic, updating ACLs, modifying interface/port

settings). Initially, we focus on path changes and

summarize each change in the form:

 pc: old_path => new_path

• pc: a packet class, an equivalence class where every

packet is forward the same way [3]

• old_path, new_path: regular expressions

defining a path in the previous network and the current

network, respectively

Problem Statement and Goals

Key Challenge: deriving a regular expression that

describes the path change at the right level of abstraction

• Precise: informative enough to capture the impact of

the configuration change
 ◦ new_path: .* - not precise enough to describe impact

• Concise: uncover the high-level intention of the

configuration change
 ◦ old_path: .* - concisely matches all previous paths

Mining Strategies:

• Correctness: the expression correctly identifies the

change and could be used to synthesize a change [2]

• Minimality: bias toward expressions with fewer terms

(Occam’s razor)

• Topology restrictions: if only a single path exists
between nodes n1 and n2, ignore intermediate hops

• Non-empty path change: the difference between
old_path and new_path is non-empty

• Indistinguishable nodes: automatically inferred or

user-defined sets of nodes with similar function

Generalizing Useful Path Expressions

Application of Mining Strategies

[1] H. Kim, J. Reich, A. Gupta, M. Shahbaz, N. Feamster, R. Clark. Kinetic:

Verifiable Dynamic Network Control. In USENIX Symposium on Networked

Systems Design and Implementation (NSDI '15), 2015.

[2] S. Saha, S. Prabhu, P. Madhusudan. NetGen: Synthesizing Data-Plane

Configurations for Network Policies. In Symposium on Software Defined

Networking Research (SOSR '16), 2016.

[3] A. Khurshid, X. Zou, W. Zhou, M. Caesar, P. Godfrey. VeriFlow: Verifying

Network-Wide Invariants in Real Time. In USENIX Symposium on Networked

Systems Design and Implementation (NSDI '13), 2013.

References

Jason Croft* Shambwaditya Saha* Anduo Wang† and Madhusudan Parthasarathy*

* University of Illinois at Urbana-Champaign † Temple University

Network Configuration Changes
NetSum: Mining Summaries of

s0 s3 s1 s2

fw1

fw2

src dst

src s0 s1 s2 dst

Input: two network configurations: N → N’

Output: summary of each changed path, as a regular

expression

 (single packet class)

• The most generic expression does not capture the

intention of the configuration change:

 .* => .*

• An explicit expression is too verbose:

 (A+B+C) F1 X Z => (A+B+C) F2 Y Z

• Goal: a concise, useful expression:
 .* F1 .* => .* F2 .*

Motivating Example

A B C

F1 F2

X Y

Z

A B C

F1 F2

X Y

Z

