
Automating SDN Composition: A Database Perspective

Anduo Wang∗ Jason Croft‡
∗ Temple University ‡University of Illinois at Urbana-Champaign

ABSTRACT
To keep up with the complexity of SDN management, it is
generally agreed that modular development of the controller
software plays a key role. However, forming a correct mod-
ular composition is still a challenging task. An operator
needs to understand the module internals and to manually
wire inter-module interactions that often depend on the un-
derlying packets. In contrast, this poster presents a novel
database approach towards automatic, packet-agnostic com-
position out of black-box modules.

1. PROBLEM STATEMENT
To keep up with the complexity of SDN management, it is

generally agreed that modular development of the controller
software plays a key role. Advanced modular SDN plat-
forms [1] enable operators to program their network goals
— traffic forwarding, fault tolerance, resource provision-
ing, stateful middleboxes, service chains, and more — as
independently created control modules. However, forming a
correct modular composition, where multiple control mod-
ules collectively realize a coherent network behavior, is still
a challenging task. An operator often needs to understand
a member module’s internals to determine the fine-grained
inter-module interactions in all execution runs. Thus, while
the SDN paradigm simplifies how to realize individual con-
trol modules, it relies on the operator to determine what is
the correct composition.

While there is little hope in building a general-purpose
procedure that stitches together arbitrary software modules,
we believe it is feasible to automate composition for a large
set of SDN modules. We build on the insight that an SDN
control module, regardless of the disparate language con-
structs being adopted, conceptually follows a common pat-
tern of checking and repair. A module continuously checks
the network states for violations of some invariants; if a vio-
lation is detected, the module computes a new network state
to repair the network and restore the invariants. Based on
this assumption, the crux to a correct SDN composition is to
prevent any module repair from reconfiguring the network
into a state that violates other modules.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

SOSR ’17, April 03-04, 2017, Santa Clara, CA, USA
c© 2017 ACM. ISBN 978-1-4503-4947-5/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3050220.3060612

Correctness criteria. First, we establish what constitutes
a correct composition, identifying criteria that guide us
through the correct composition. We propose defining com-
position correctness as a semantic-preserving property: a
composite is correct if it respects the semantics (invariants)
of every constitute module. Given a set of modules M , each
m ∈ M maintains (checks and repairs) some invariant im
about the network, a composition out of these modules is
correct if it continues to enforce every invariants

∧
m∈M im.

To see the strength of this definition, consider two simple
modules p,q in NetKAT [1] syntax, where · represents se-
quential composition, and + denotes parallel composition. p
drops (0) any packets whose destination matches X (dst=X),
and q sets the destination of some packets (those matching
some_predicate) to X (dst←X):

p ,(dst=X)· 0
q , (some_predicate) · (dst←X)

There are three different ways to compose p and q, namely
p+q, p·q, and q·p. Both p+q and p·q will drop packets orig-
inally destined to X but redirect some other packets (those
matching some_predicate) to X. Only q·p will drop all pack-
ets destined to X (including packets redirected to X by q). If
we view the semantics (invariant) of p as removing any pack-
ets destined to X, only q·p respects p’s semantics. p+q and p·q
— by leaving some packets destined to X unfiltered — both
violate q’s intention. Thus, the only correct composition is
q·p.

4

H1

H2
FW LB

S1

S2

1

2

3 1 2

3
A
1 2

Figure 1: Example network

Reference composition. While our criteria enable us to de-
cide whether or not a composition is correct, it does not au-
tomatically construct one. To see the subtlety in constructing
a correct composition, consider the network in Fig. 1. The
network consists of three boxes — firewall FW, switch A, and
load balancer LB — that connect two external hosts H1,H2
to two back-end servers S1,S2 sharing a public address (S).
Also suppose the network is controlled by three modules in-
dependently developed: routing (rt) establishes routes be-
tween the clients and the public face of the servers; firewall
(fw) filters packets originated from certain clients (H1); and
load balancer (lb) distributes and forwards packets from/to
the servers. A possible high-level specification of fw,lb is
illustrated in the following (we omit rt):

fw , ¬(src=H1·dst=S) + ¬(src=S·dst=H1)
lb , if_(ec, lb1, lb2) where

lb1 , src=H1·dst=S·dst←S1·pt←2 + · · ·
lb2 , src=S1·dst=H1·src←S·pt←1 + · · ·

Note that lb, with an auxiliary filter (ec,sw=FW·pt=1· · ·)
denoting packets entering the network from the clients, de-
fines two distinctive repairing actions based on the pattern
of the packets. For packets from the clients (ec), lb1 maps
the public server address (S) to a particular private address
(S1), otherwise it restores the source address from a particu-
lar server to S. A correct composition, a master program that
modularly combines these modules, is the following:

if_(ec, fw·(lb1+rt), lb2·fw·rt)

This master program instructs the packets from the clients
to be processed by the firewall first, followed by routing and
load balancer (fw·(lb1+rt)). For packets from the servers,
the master program schedules the load balancer before the
firewall (lb2·fw·rt) so that the public address (S) can be
properly restored for the firewall. In this composition, the
member module lb can not be treated as a black-box. Rather,
the operator needs to understand the internals of lb and to
explicitly wire its interactions with fw,rt. It is also called
the “decompose and re-compose” problem, and additional
requirements can quickly add complexity.

In contrast to this manual subtle composition, our objec-
tive is to automatically generate a traffic-agnostic composi-
tion out of (possibly finer-grained) black-box modules, like
the following equivalent composition (e,es+ec denoting all
packets entering the network edges):

e·lb2·fw·(lb1+rt)

2. A DATABASE SOLUTION
Recall the two simple modules p,q (§1). The correct com-

position q·p can be derived from the fact that the network
repair pushed by q can change the network into a state that
activates p — a state that violates the invariants checked by
p. We introduce behavioral dependency, denoted by x→y (or
y←x), to capture the dependence of module x on y: when x’s
repair can inadvertently introduce violations to y, x requires
further (repairing) service from y. If x→y, we compose by
x·y; otherwise, if neither x→y nor y→x, we compose by x+y.

This composition strategy generalizes to a set of modules
M as follows: First, we compute a dependency graphD that
represents all dependencies. Next, we develop a stratifica-
tion algorithm to convert D into a correct composition.

5

fw

lb1 lb2

e rt1

2

3

4

4

1 2 3 4

e ⠁lb2 ⠁fw ⠁(lb1+rt)

Figure 2: Stratification of dependency graph (left). Con-
structing the reference composition based on stratification
number (right).

Constructing composition (stratification algorithm).
Fig. 2 (left) depicts the dependency graph for the mod-
ules {e,lb1,lb2,fw,rt} collectively driving the network in
Fig. 1. In the dependency graph, each module x (node) is
associated with a stratification number (sn(x) in red). In-
tuitively, this number decides the (sequential) ordering in

6

+rm(_,S,H1)
-rm(_,S1,H1)

lb2 fw

θ≡
src=S∧dst=H1

-rm(_,S,H1)

δ≡
src=S1∧dst=H1

θ[S,H1]≡S=S∧H1=H1 is SAT

δ∧(src=S∧dst=H1)
≡ src=S1∧dst=H1∧src=S is UNSAT

Figure 3: Automatic dependency discovery by SAT/UNSAT
reasoning. Invariants θ, δ in the diamond, repairing updates
in the square.

the modular composition. Modules with equal stratification
numbers, on the other hand, are independent and are com-
posed in parallel. More precisely, the stratification number
is given by:

sn(x) =

{
max({sn(y)|if y is a parent of x in D}) + 1

1 if x is the root of D

Fig. 2 (right) shows the composition constructed from the
modules’ stratification numbers. In general, we have:

∀u, v, x, y ∈M, sn(u)+1 = sn(v)+1 = sn(x) = sn(y)

comp(M) = · · · (u+ v+ · · ·) · (x+ y+ · · ·) · · ·
Generating the dependency graph. We build D by de-
termining the behavioral dependency relation between every
pair of modules. To determine if x→y (or y→x), we leverage
automatic reasoning based on database irrelevant updates.
The key idea is to represent all network states as database
tables [3]: the dataplane as shared, stored tables, while the
modules operate on derived tables (database views); and to
reduce a module x’s operations — the checking and repair-
ing of invariants — to a database query (view xv) and a
database update (view update xu). This allows us to apply
database irrelevance reasoning [2] to generate the depen-
dency relation: For ∀x,y∈ M , x depends on y (x→y) if x’s
updates can cause a violation to y (xu is irrelevant to yv), but
y’s updates can never affect x (yu is not irrelevant to xv).

Fig. 3 illustrates the reasoning process for deciding
lb2 →fw: lb2 update (insert +rm(_,S,H1) to reachability ta-
ble rm) can violate fw because the invariant θ is satisfiable
(SAT); but fw will not inadvertently affect lb2 because the
conjunction of δ and the repairs is not satisfiable (UNSAT).

While our composition method is discussed in a concrete
SDN platform (i.e., NetKAT), we believe our strategy will
apply to a large family of SDN modules — the particular
choice of language is irrelevant; the enabling assumption is
an SDN control’s check-repair structure.

Acknowledgment This material is based upon work sup-
ported by the NSF Grant CNS 1657285.

3. REFERENCES
[1] ANDERSON, C. J., FOSTER, N., GUHA, A., JEANNIN, J.-B.,

KOZEN, D., SCHLESINGER, C., AND WALKER, D. Netkat: Semantic
foundations for networks. In POPL ’14.

[2] BLAKELEY, J. A., COBURN, N., AND LARSON, P.-V. Updating
derived relations: Detecting irrelevant and autonomously computable
updates. ACM Trans. Database Syst. 14, 3 (Sept. 1989), 369–400.

[3] WANG, A., MEI, X., CROFT, J., CAESAR, M., AND GODFREY, B.
Ravel: A database-defined network. In SOSR (2016).

