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ABSTRACT
Software-defined networking (SDN) provides an unprecedented op-
portunity to exercise computing principles in networking practice.
This paper investigates data integration, a under-explored disci-
pline from the database community. We propose to manage the
various SDN control applications that collectively drive a shared
dataplane using a data integration system. First, we develop a base-
line design and study its feasibility on two networking challenges
not adequately addressed in classic data integration systems: the
extensibility requirement to add new controls on demand, and the
performance requirement to cope with fast dataplane updates. Cen-
tral to our baseline design is a relational model, where the entire
SDN is represented as relational data (values in tables) with distinct
roles. The control applications act as data sources generating net-
work state, and the dataplane becomes the integrated whole. Based
on this model, we explore extensions to data integration systems
called behavioral dependency, a formal notion that captures the dy-
namic interactions between the control applications. While our de-
sign and extension are not intended to provide a comprehensive so-
lution, we believe our study is a step toward reaping the benefits of
data integration for SDN.

1. INTRODUCTION
In recent years, the networking community has looked to princi-

ples from the fields of programming languages, operating systems,
and distributed systems to design software-defined networking’s
(SDN) salient features: network-wide control and higher-level ab-
stractions. For example, programming language principles have en-
abled higher-level programming abstractions and highly optimized
compilers [28, 30, 25]. Modular programming and functional con-
structs [11, 27, 23] have raised the level of abstraction in construct-
ing forwarding applications. More advanced data structures such as
automata and graphs [16, 26] have been proposed for network dy-
namics and service chains. Simultaneously, operating system and
distributed system principles [13, 17, 3, 22, 5] have been used to
create network-wide control. By offering network-wide structure
and separating distributed state management from individual appli-
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cation control logic [6, 31], the complexity of adding new features
is drastically reduced.

Indeed, these principles have resulted in improved management
of a single, monolithic control application. However, their effec-
tiveness in integrating control applications, i.e., combining a col-
lection of potentially overlapping and conflicting networking con-
trols into coherent forwarding behavior, is less evident. For exam-
ple, with higher-level modular programming [15, 26, 16, 24], the
operator must carefully construct a master program that foresees
all possible control module interactions. This master program is
restricted to applications that affect the same shared traffic. To han-
dle applications over shared network resources, a complementary
approach [31] is to detect and resolve conflicts via state manage-
ment of the shared resources. The integration support then relies
on hardwired state and dependency models. Therefore, integration
support derived from programming language, operating system and
distributed system principles is often too limiting and/or inflexible.

As a means to tackle this network integration problem, we pro-
pose an investigation into an under-explored discipline to influence
SDN design: data integration [18, 10]. By building on principles
from database and data integration research, we argue we can for-
mulate many network management tasks as data integration prob-
lems of merging data sources into an integrated whole. In our for-
mulation, we model the entire network as relational data, with val-
ues stored in tables. We assign distinct roles, where the control
applications serve as the individual data sources that produce net-
work data, and the dataplane becomes the integrated whole. We
demonstrate the feasibility of data integration through a baseline
design tailored for two basic yet challenging networking require-
ments: extensibility and performance. In addition, we examine the
opportunities of this approach toward solving a long-standing net-
working problem: dependency discovery between complex control
modules.

The baseline design is derived from two networking requirements:
(1) the system extensibility requirement to accommodate an enlarg-
ing body of control applications, and (2) the performance require-
ment to cope with fast dataplane updates under complex control ap-
plications. The former entails a local-as-view (LAV) design of the
source-global mapping where the source applications are described
as views (virtual tables), implemented as queries over the dataplane
tables. In LAV, adding a new control application simply requires
extending the source-global mapping with a new descriptor and no
additional changes. The latter requirement translates into the chal-
lenge of write-dominant data integration under complex integrity
constraints. Our baseline addresses this challenge by altering the
default management of constraints in a database system. Rather
than checking for violations at each write — a strategy that incurs
non-negligible overhead as constraint complexity increases — our



baseline attempts to avoid network updates that might cause a vio-
lation.

Looking forward, a key challenge of network integration not ad-
dressed by data integration is that networking data sources (i.e.,
control applications) are “active” entities interacting in complex
ways. That is, their actions (i.e., network updates) depend on each
other [1, 8, 14]. For example, a security application may rely on a
separate routing application to remove an unsafe path. To formally
capture such interactions, we developed behavioral dependency, an
extension to classic data integration. Moreover, by building on ir-
relevant updates research [20, 4], we formulate behavioral depen-
dency as a satisfiability problem that can be automatically solved
using a SAT solver [33]. The automatically derived dependency
can be used to combine the behavior of multiple applications into
an orchestrated update. Each step of the update is executed by an
individual application, followed by the applications it behaviorally
depends on, and followed by those that depend on it. Intuitively,
this orchestrated update simulates a master program that instructs
the behavior of multiple applications that collectively drive a single
network — a long-standing networking problem [24, 12].

In sum, our system design and extension do not intend to provide
a comprehensive integration solution. Rather, this paper seeks to
open a discussion on the long-standing network management prob-
lem in the SDN era from a data integration perspective. Our dis-
cussion is forth-looking and speculative, exploring the following
questions for the benefit of the broader SDN community: Are data
integration principles applicable to SDN? Can we customize and/or
extend data integration to help long-standing networking problems?
Can a data integration perspective lead to exciting new use cases?

2. FROM DATA INTEGRATION TO
NETWORK INTEGRATION

2.1 Data integration
Data integration [18, 32, 19] examines the problem of combining

data from a variety of sources to form a new, unified whole. More
formally, a data integration system is defined as I = 〈G,S,M〉,
with a global schema G, semantic mappingsM, and data sources
S. The system exposes to users a single and coherent interface,
through a mediated global schema G. Users can query and access
data from local sources while the system hides the details and in-
consistencies of the constituting sources. Semantic mappings M
specify the relationship between the schemas of the data sources S
and the global schema G. The semantic mappings allow answering
queries over G using queries over S. We consider data sources that
are relational.

There are two approaches to (virtual) data integration, which dif-
fer in the wayM is defined: global-as-view (GAV) and local-as-
view (LAV). In GAV, the global tables are defined in terms of the
local tables. Each global table is thus a view of the local tables. In
LAV,M is defined in a somewhat dual manner: the local tables are
defined in terms of the global tables. Hence, each local table is a
view of the global tables.

A important problem in a data integration system is the reconcil-
iation of inconsistencies between the data sources. Inconsistencies
are captured by integrity constraints that specify what data instances
are acceptable. Integrity constraints can be specified directly over
the global schema, or expressed on the individual sources and even-
tually expanded and unfolded on the global schema. The con-
straints can accelerate data access (i.e., reads) in a read-dominant
I, but they deteriorate I’s performance when faced with frequent
updates (i.e., writes) due to the overhead of checking the integrity
constraints.

2.2 Network integration
In SDN, network integration is the problem of enabling multi-

ple independently created, potentially overlapping and/or conflict-
ing control applications to collectively drive a network in a coher-
ent manner. By modeling the entire network state (i.e., the control
applications and dataplane) as relational data, we can cast this prob-
lem to a data integration problem and define a network integration
system as IN = 〈GN ,SN ,MN 〉. The global schema GN , aug-
mented with integrity constraints, characterizes a consistent data-
plane. The source schemas SN describe network states contributed
by independently operated control applications. The goal of net-
work integration is to find a mapping MN that synchronizes be-
tween the control applications’ states and the network dataplane
under the integrity constraints.

While network integration shares a similar goal with data in-
tegration to merge sources into a coherent global, the two prob-
lems have a different focus. Data integration systems today are
often optimized for read-only queries or read-dominated global in-
stances [29] under simple integrity constraints. The need to check
for constraint violations on every write, however, drastically hurts
the performance of these systems for intensive writes. Moreover,
the interactions between the sources is limited to those expressed
as constraints on the global data. In contrast, a network integration
system requires a much more difficult and complex problem with
peculiar characteristics. A network integration system must enable
frequent writes on the global data under arbitrary constraints, and
directly support complex interactions and dependencies between
the sources.

In this paper, we develop a baseline design to study two criti-
cal network requirements not adequately addressed in existing data
integration systems:

Fast updates of global data under arbitrarily complex in-
tegrity constraints. The dataplane (the global database with schema
GN ) has to support arbitrary integrity constraints to reflect the logic
of the control applications and simultaneously accommodate real-
time dataplane updates, i.e., writes to GN . A network integration
system must address the difficult and competing requirements of
fast turn around time for frequent writes and checking complicated
integrity constraints.

Behavioral dependency between sources. The control applica-
tions (data sources SN ) collectively maintain a consistent network
dataplane and are involved in complex interactions. To consistently
update the dataplane, individual application updates must be or-
chestrated. A network integration system needs to resolve conflicts
between overlapping applications and streamline updates for col-
laborative applications.

3. BASELINE DESIGN
In our baseline design of network integration system, all informa-

tion is represented by values in tables, including those contributed
by control applications and the global dataplane. The global data-
plane GN has three relations:
topology(node_id, node_id, ...)
configuration(flow_id, switch_id, next_id, ...)
reachability_matrix(source, destination, ...)

The table topology stores link pairs (node_id,node_id).
reachability_matrix stores the reachability information from
source to destination for each flow, as well as the live traffic
requirement in the network. configuration stores the entries
of a flow (the next hop next_id for a switch switch_id). Intu-
itively, configuration stores per-switch configurations.

With this design, the control applications serve as the data sources.
Each has a partial view of the global schema of GN and controls a



portion of GN ’s data. For example, consider the following schemas
for three typical SDN applications:

routing(source, destination, path, ...)
load_balancer(server_id, load, ...)
firewall(source, destination, ...)

Integrity constraints capture the meaning of the network — the
perceived acceptable states, and the intention or policy governing
each control application. An integrity constraint is an arbitrary logic
assertion over a schema. In our baseline design, these are defined
over schemas in SN . Ultimately, all constraints are mapped to GN
viaMN .

3.1 System extensibility for on-demand source
control

A key design component of a network integration system IN is
the specification of the mappingMN between the source applica-
tions SN and the global dataplane GN . There are two approaches to
defineMN (§2): GAV and LAV. GAV is simpler to implement, but
less flexible in accommodating new sources. Adding a new data
source may require revisions of the global schema and mappings
between the global schema and source schemas. LAV favors sys-
tem extensibility at the expense of harder query processing over the
integrated whole. However, in many practical scenarios, such as the
one presented in this paper, query processing can be accomplished
efficiently [9].

We take the position that system extensibility is the more valu-
able property in network integration. The networking community
today witnesses little support for extending the control plane with-
out explicit global coordination [15, 5, 31, 21]. The problem of
compiling individual control applications into the dataplane con-
figuration, on the other hand, is better understood and seems to be
more tractable [26, 16, 28, 27, 24, 11]. Thus, we focus on system
extensibility and adopt the LAV approach to achieve it.

In the relational model, LAV specifications of data sources are
simply SQL queries over the global schema. In network integration,
the query extracts information relevant to the application’s control.
For example, the following query defines load_balancer:

CREATE VIEW load_balancer AS(
SELECT node_id AS server_id,

count(*) AS load
FROM reachability_matrix)

The load balancer application monitors the network state by check-
ing the contents of the load_balancer view. More importantly,
as a data source, when overload occurs, it modifies and generates
new network state by updating the view and pushing the changes to
the integrated dataplane.

3.2 Fast dataplane updates under complex net-
work control

The second important design decision is modeling the basic net-
working requirement: the network is under continuous updates from
all control applications. Network updates correspond to a set of
writes over the global dataplane schema. Each write must be val-
idated against the integrity constraints that define the intention, or
policy, of the control applications. As a result, the networking re-
quirement translates into the following data integration challenge:
coping with frequent writes under arbitrarily complex integrity con-
straints.

By default, an integration system checks each write against all
the integrity constraints. If a constraint violation is detected, the
integration system will roll back and abort the write. As the com-
plexity of control applications increases, so does the computational

complexity of their integrity constraints. Combined with an in-
creasing number of writes, the overhead for constraint checking will
quickly make the performance of the integration system impracti-
cal. In fact, most integration systems are read-dominant, supporting
simple constraints that can be efficiently checked (e.g., inclusion
dependency, or whether the set of values in attribute A are a subset
of attribute B).

Rather, our baseline design disables the default integrity con-
straint checking in a database system and pursues a new approach.
Our design avoids violations by allowing only constraint-compliant
writes, employing violation views as a means to specify network
constraints. A violation view is a SQL query that declares how
to extract information that violates the desired network properties.
For example, the violation view for load_balancer contains
servers with load exceeding threshold t:

CREATE VIEW lb_violation AS (
SELECT * FROM load_balancer WHERE load >= t);

With violation views, regardless of the complexity of the network
policies, the network data remain as plain relational data. To main-
tain constraint compliance on this plain network data, rather than
checking the emptiness of the violation after each write, we assume
that the network updates are issued in an intelligent way such that
they are free of violation.

4. FUTURE WORK: MANAGING BEHAV-
IORAL DEPENDENCY

Looking forward, we investigate the benefit of data integration
in tackling a long-standing networking problem: managing interac-
tions between multiple control application [2, 8, 1, 14]. As a first
step, this section outlines possible extensions to our NIS baseline
design.

With multiple applications jointly driving the behavior of a single
network, the applications can interact in complex ways. Applica-
tions might conflict if they contribute network updates that contra-
dict on network state. For example, some light-loaded paths might
be marked “unsafe” by a firewall, but are considered “preferred”
by a load balancer. At the same time, applications also collaborate.
After a firewall application adds suspicious paths to its blacklist
policy, it may depend on a separate routing application to handle
the removal of any unsafe paths it flags.

In an NIS, this problem translates to the management of inter-
actions between data sources. The data sources in a traditional in-
tegration systems are assumed to be autonomous and independent.
When individual sources contradict each other, the integration sys-
tem simply rolls back and aborts the write. However, moving be-
yond such simple conflict prevention, aside from the performance
limitation discussed in §3, existing data integration does not offer
adequate support needed for the networking scenario.

To address this limitation, we propose behavioral dependency
to formally define the dependency between applications: an ap-
plication depends on another if the former requires service from
the latter. The notion of behavioral dependency leverages database
research on independent queries (or irrelevant updates) [20, 4, 7].
Given a view v derived by a query q over base tables, v is said to be
independent of update u if the updates u cannot affect v. Our goal
is to characterize the dependency between the data sources (i.e., ap-
plications) by examining updates to the integrated dataplane con-
tributed by those applications.

Assume an NIS consists of a set of control applications c1, c2, · · · ,
and the integrated dataplane GN . Each application is associated
with a view di representing its local data. The constraint describ-
ing the application policy is expressed by a violation view vi (§3).



The operation of each application is to restore its policy whenever
a violation is detected in its violation view: whenever an update
of GN results in an insertion to vi, the application is triggered to
push writes to GN to remove the violation in vi. Following this op-
erational model, behavioral dependency is formulated as follows.
A source application ci depends on another source cj if there ex-
ists some emptiness repair of vi that results in update u of GN that
causes insertion to vj that violates and thus requires further (repair-
ing) action from cj .

We now describe the application of behavioral dependency: au-
tomatically orchestrating network updates by multiple applications
that collectively drive a single network. The idea is to first automat-
ically derive a dependency graph for the applications via satisfiabil-
ity reasoning. The resulting dependency is then used to coordinate
updates contributed by the participating applications.
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