
This paper is included in the Proceedings of the
15th USENIX Symposium on Networked

Systems Design and Implementation (NSDI ’18).
April 9–11, 2018 • Renton, WA, USA

ISBN 978-1-939133-01-4

Open access to the Proceedings of
the 15th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by USENIX.

Automatically Correcting Networks with NEAt
Wenxuan Zhou, Jason Croft, Bingzhe Liu, Elaine Ang,

and Matthew Caesar, University of Illinois at Urbana-Champaign

https://www.usenix.org/conference/nsdi18/presentation/zhou

Automatically Correcting Networks with NEAt

Wenxuan Zhou, Jason Croft, Bingzhe Liu, Elaine Ang, Matthew Caesar
University of Illinois at Urbana-Champaign

{wzhou10, croft1, bingzhe, ranang2, caesar}@illinois.edu

Abstract
Configuring and maintaining an enterprise network is

a challenging and error-prone process. Administrators
often need to consider security policies from a variety of
sources such as regulatory requirements, industry stan-
dards, and mitigating attack vectors. Erroneous config-
uration or network application could violet crucial poli-
cies, and result in costly data breaches and intrusions.
Relying on humans to discover and troubleshoot viola-
tions is slow and prone to error, considering the speed at
which new attack vectors propagate and the increasing
network dynamics, partly an effect of SDN.

To address this problem, we present NEAt, a system
analogous to a smartphone’s autocorrect feature that en-
ables on-the-fly repair to policy-violating updates. It
does so by modifying the forwarding behavior of updates
to automatically repair violations of policies such as
reachability, service chaining, and segmentation. NEAt
takes as input a set of administrator-defined high-level
policies, and formulates these policies as directed graphs.
Sitting between an SDN controller and the forwarding
devices, NEAt intercepts updates proposed by SDN ap-
plications. If an update violates a policy, NEAt trans-
forms the update into one that complies with the pol-
icy. Unlike domain-specific languages or synthesis plat-
forms, NEAt allows enterprise networks to leverage the
advanced functionality of SDN applications while simul-
taneously achieving strong, automated enforcement of
general policies. Based on a prototype implementation
and experimentation using Mininet and operation trace
of a large enterprise network we demonstrate that NEAt
achieves promising performance in real-time bug-fixing.

1 Introduction

Modern enterprise networks must comply with highly
stringent security demands that merge together demands
from a variety of sources and standards. As a result,
network administrators must carefully design and main-
tain their networks to follow these policies, by mapping
out device contexts and access to sensitive resources, as-
sessing risk, and installing access control policies that
effectively mitigate that risk. However, mistakes and
errors in implementing the policies can result in costly

data breaches, segmentation violations, and infiltrations.
Through 2020, Gartner predicts 99% of firewall breaches
will be caused by misconfigurations [1, 2].

While discovering and troubleshooting these bugs is
essential to maintaining network security, doing so is
notoriously hard. Relying on humans to configure and
maintain the network configuration is not only prone to
mistakes, but slow. Given the sophistication and speed
at which new attack vectors propagate, manually updat-
ing and testing new configurations leaves the network in
a vulnerable state until the attack vector is fully secured.
Further, maintaining a security posture in the presence of
software-defined networking (SDN) is even more chal-
lenging. While SDN enables new functionality, applica-
tion designers may not be aware of the policy or security
requirements of the networks on which their applications
will be deployed. Worse yet, SDN applications written
in general-purpose languages such as Java or Python can
be arbitrarily complex. Requiring applications to imple-
ment and modify their behavior to support a broad spec-
trum of policies needed across a broad spectrum of net-
works presents an almost insurmountable challenge.

To this end, we present NEAt, a transparent layer
to automatically repair policy-violating updates in real-
time. NEAt secures the network with a mechanism sim-
ilar to a smartphone’s autocorrect feature, which enables
on-the-fly repair to policy violating updates and ensures
the network is always in a state consistent with pol-
icy. Unlike prior work on update synthesis, NEAt main-
tains backward compatibility and flexibility to run gen-
eral SDN application code. To do this, NEAt does not
synthesize network state from scratch, but rather influ-
ences updates from an existing SDN application toward a
correct specification. In particular, NEAt enforces a con-
crete definition of correctness by influencing and con-
straining dynamically arriving network instructions. To
formulate those correctness criteria, we construct a set
of policy graphs to represent humans’ correctness intent,
which is based on the observation that important error
conditions can be caught by a concise set of boundary
conditions. NEAt sits between an SDN controller and
the forwarding devices, and intercepts the updates pro-
posed by the running SDN applications. If the update
violates an administrator’s defined policy, such as reach-
ability or segmentation, NEAt transforms the update into

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 595

one that complies with the policy.
A key challenge is discovering update repairs in real-

time. In NEAt, we build on prior work on verification to
efficiently model packet forwarding behavior as a set of
Equivalence Classes (ECs) [19, 30]. Upon receiving an
update from an SDN controller, NEAt computes the set
of affected ECs and checks for a violation in the same
manner as [19]. To repair the violation, we cast the prob-
lem as an optimization problem, to find the minimum
number of changes (added or deleted edges) to repair the
violating EC’s forwarding graph. To rapidly compute re-
pairs on arbitrarily large networks, we exploit two opti-
mization techniques, topology limitation which “slices”
away irrelevant part of the network, and graph compres-
sion, to compress both an EC’s forwarding graph and the
topology. Then we solve the optimization problem on
the sliced and compressed graphs.

Furthermore, as NEAt repairs policy-violating up-
dates, stateful applications — without knowledge of the
violating or repaired updates — will diverge from the un-
derlying network state. To address this problem, applica-
tions can interactively propose updates to NEAt and re-
ceive notifications of repairs with minor modifications to
application code. Thus, applications can remain unmod-
ified and leverage NEAt transparently in a pass-through
mode, with a risk of state divergence, or propose updates
in an interactive mode.

A preliminary evaluation of our prototype shows
promising results. On topologies with up to 125 switches
and 250 hosts, NEAt can discover repairs in under one
second for applications with non-overlapping rules, and
under two seconds for applications with more complex
dependencies. Furthermore, we find NEAt can verify
and repair updates on realistic data planes. On a large
enterprise network with 1M forwarding rules, NEAt dis-
covered and repaired 28 loop violations. Simulations on
this data set show NEAt can verify and repair reachabil-
ity and loop freedom policies in under a second.

2 Motivation

Enterprise network policies must compose together re-
quirements from a variety of demands to mitigate risk
for attack vectors and limit access to sensitive resources.
As a result, network administrators must take into ac-
count complex, composed policies configuring or updat-
ing a network. This is a slow and often error-prone pro-
cess for a human operator. The operator may introduce
errors translating the demands into high-level policies,
or translating the policies into low-level routing config-
urations. While tools [17, 19] exist to automatically dis-
cover misconfigurations in real-time, they offer the oper-
ator no guidance on how to repair the misconfiguration
beyond the type of correctness property that is violated.

Rather, these tools block updates from introducing viola-
tions into the data plane state, at the cost of functionality.

Instead, a system to automatically repair updates, en-
suring the network always remains consistent with the
administrator’s policy, can relieve a slow and error-prone
process from the configuration process. If an update vi-
olates a given property in the network, a repair should
fix the cause of the violation while maintaining the origi-
nal purpose of the update. We argue a minimal change is
best, to repair the update with the least number of added
or removed edges. Furthermore, such a system should
improve upon a manual effort with transparency in both
architecture and performance. A system that requires
hours or days to verify and repair a network is not useful
if the process can be completed manually in just a few
minutes. It should also not require modifying existing
applications or redesigning infrastructure.

Efficiently discovering repairs is not a trivial addition
on top of data plane verification tools, such as [17, 19].
Due to the size of the network and data plane state, per-
formance is a key challenge in repairing policy viola-
tions in real-time. Consider a naive approach built on
top of VeriFlow that separates the forwarding behavior
into Equivalence Classes (ECs) of packets. All packets
within an EC are forwarded in precisely the same man-
ner. Each EC defines a configuration graph that captures
the the forwarding packets for packets within the EC.
The number of ECs is dependent on the number of de-
vices and forwarding rules in the network, and the time
to discover a repair is dependent on the number of ECs
and the number of edges in the network. A brute force
approach might discover repairs by testing all permuta-
tions of edge additions and removals to an EC’s config-
uration graph. A repair that requires only adding edges,
from 10 possible unused topology edges, would need to
explore 10! (˜3.6M) permutations. If the violating prop-
erty can be checked in just 1ms, each EC could take up
to 10 minutes to find a repair.

3 Design

NEAt operates between the controller and switches, in-
tercepting and verifying updates against a set of correct-
ness properties specified by a network operator. NEAt
takes these properties as input in the form of a directed
graph called a policy graph (1 in Figure 1). Policy
graphs can express properties including reachability, seg-
mentation, and waypointing, as described in §4.

To verify updates conform to the operator’s intended
policies, each update is applied to a model of the data
plane state and checked using NEAt’s verification en-
gine. a policy violation, the correction engine transforms
the update or existing data plane state to satisfy the vi-
olated policy. This ensures only updates conforming to

596 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the network policies are sent onto the network.
NEAt can integrate with the existing SDN control in-

frastructure in two ways. It can serve as a transparent
layer in a pass-through mode, or can interact with con-
troller applications in an interactive mode with minor
changes to the applications.

Policy

X

X

NEAt
Network Model

Verification
Engine

Correction Engine

Compressor

Optimizer

Network
Events

Yes

No

Updates

1

2

3

4

5

Figure 1: System architecture of NEAt.

3.1 Verification and Repair
To verify updates and efficiently reason about the current
data plane states, NEAt builds on our previous work in
data plane verification [19,30] that separates the forward-
ing behavior into Equivalence Classes (ECs) of packets.
From each EC, we can extract a configuration graph that
defines the forwarding behavior for packets within the
EC. A repair for a given EC must then explore additions
or deletions of links in the configuration graph. Finding
a link addition requires examining the topology graph
defined by the edges in the physical topology. To ef-
ficiently discover repairs, we propose two optimization
techniques to compress the configuration and topology
graphs, described in §6. We refer to the outcome of these
techniques as the compressed configuration graph and
compressed topology graph.

With each update (2), NEAt applies the change to a
network model, from which the ECs affected by the up-
date are computed. Using the policy graph, NEAt checks
each affected EC in the network model for policy viola-
tions using the verification engine (3). If the update
does not introduce any violations, it is sent onto the net-
work. However, if it does introduce a violation, the con-
figuration graph and topology graph are compressed and
passed to the correction engine (4). The optimizer re-
turns a set of edges to be added or removed to the EC’s
configuration graph, which are then applied to the net-
work model, converted to OpenFlow rules, and sent to
the forwarding devices (5).

3.2 Interaction Modes
To prevent applications from diverging from the underly-
ing network state, NEAt exposes two integration modes:
pass-through and interactive.

Controller

NEAt

Stream of
Updates

App App

Suggested

Changes

Proposed
Updates

Interactive

Pass-
Through

Figure 2: Interaction modes of NEAt.

In pass-through mode, NEAt acts as a transparent
layer that sits between the controller and forwarding
devices. This mode enforces network policies without
modification to controller or SDN applications. Both
these applications and the controller are unaware of
NEAt. NEAt intercepts updates from the controller, as
well as updates from the network about link and switch
state, and passes them to the verification and correction
engines. The corrected updates abide by correct network
policies, and are directly applied to the network.

It’s possible for applications to have a different view
with NEAt about the current network state in pass-
through mode. But this does not violate consistency,
since NEAt acts as an arbitrator during rule insertion,
and will diligently verify and correct updates regard-
less of the application’s intention. The original intention
of an application is well preserved if the application is
written with full knowledge of, and in accordance with,
the network-wide correctness criteria. Otherwise, NEAt
may sacrifice application correctness for the benefit of
enforcing correct network policies.

Interactive mode enables applications to leverage
NEAt’s verification and repair process by checking pro-
posed updates. An application passes to NEAt a set of
updates, which are checked against the current network
model. If the updates introduce a violation, NEAt returns
a set of repaired updates, which the application can ac-
cept or reject. If the application accepts the changes, it
can send them onto the network and update its state, en-
suring the application and network state are consistent.
If the application rejects the changes, it can propose an-
other set of updates to NEAt. Interactive mode requires
modifications to applications to update its state with the
accepted changes.

NEAt maintains consistency between the interaction
modes, allowing applications and the controller to both
simultaneously benefit from NEAt’s automated repair.
For example, one application can use NEAt’s API while
another remains unmodified, allowing its updates to be
checked by NEAt in pass-through mode.

4 Policy as Graphs

Many existing tools reason about individual network
paths [18, 19]. While this approach has proven effec-
tive for network verification, synthesizing network state
changes requires viewing the entire network as a whole

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 597

(i.e., a graph), as changes that repair one path may influ-
ence the correctness of other paths. In addition, express-
ing network correctness conditions as a graph instead of
a collection of paths enables dealing with a richer set of
policies, for instance, path consistency and load balanc-
ing. Based on this intuition, NEAt takes as input a set
of intended policies, and formulates these policies as di-
rected graphs called policy graphs.

A policy graph is defined on a packet header pattern,
for example, ip dst 10.0.1.0/24, port 443. Each node on
a policy graph is a traffic footprint matching a particu-
lar packet header pattern at a certain network location,
e.g., a switch, a routing table, an ACL table. Edges are
marked with labels denoting different types of reachabil-
ity constraints. For example, the graph in Figure 3 re-
quires that at least m paths exist from node A to B when
m > 0, each bounded by n hops, or no path exists from A
to B when m = 0. For simplicity, packet header patterns
are not depicted. Next, we show how to represent several
commonly-used network policies as policy graphs.

A B(m,n)

Figure 3: Policy edge

A B
(1,*)

D C(2,5)

E

(0,*)

(1,*)

Figure 4: Policy graph

S1

S2

S3

S4

S5

C

(1 ⁄5,*)

(1 ⁄5,*)

(1 ⁄5,*)
(1 ⁄5,*)

(1 ⁄5,*)

Figure 5: Load balancing policy

Reachability This policy requires that at least one path
exists from one node to another. It is expressed with
m = 1 and n unspecified (shown as “*”), for example,
the edges A→ B and B→C in Figure 4.
Bounded path length This policy defines the maximum
number of hops between two reachable nodes. The path
length is specified using n. For instance, the path from D
to C in Figure 4 is bounded by 5 hops.

Shortest path This policy can be viewed as a special
case of the bounded path length policy, where each path
is bounded by the length of the corresponding shortest
path in the topology. Therefore, it can be encoded in a
similar way as bounded path length policy.
Multipath This policy requires multiple paths exist
from one node to another. It is expressed by assigning
m an integer larger than one. As shown in Figure 4, there
should be at least two paths from D to C (m = 2).
Isolation This policy prevents one node from reaching
another, which is expressed by specifying m = 0 on the
edge connecting the two isolated nodes.
Service chaining The policy defines a set of waypoints
that one flow must traverse in sequence. It is represented
by concatenating edges on a policy graph. For example,
in Figure 4, traffic from node A should traverse a way-
point B before reaching C.
Load balancing This policy requires distributing traffic
from a source to a pool of servers according to a speci-
fied distribution. In our policy model, it is expressed by
assigning m a fractional value . As an example, Figure 5
denotes a policy that requires traffic from client C to be
distributed evenly among five servers.

In summary, a policy graph is able to express both
qualitative and quantitative reachability constraints.

5 Repair Algorithm

In this section, we present NEAt’s core algorithm for re-
pairing violations at runtime constrained by a given pol-
icy graph. First, we introduce the network model and
give an overview of the algorithm. Next, we describe
our formulation of the repair problem for basic reach-
ability policies as an integer linear programming (ILP)
problem. We then generalize this approach to repair the
wider range of policies discussed in 4.

Network Model As described in §3, upon intercepting
an update, NEAt constructs a network graph model for
each affected EC that captures the configure forwarding
behavior for all packets within the EC. This directed con-
figuration graph `c, along with a topology graph T and
policy graph ℘ serve as inputs to the repair algorithm.

Each node in these graphs represents a host or a net-
working device, and each edge between a pair of nodes
defines reachability between them. The policy graph ℘,
as discussed in 4, is a directed graph constructed from a
set of conflict-free policies that represents the expected
behavior of the whole network and hence should not be
violated at runtime. Policy conflict freedom can be guar-
anteed by tools like PGA [23], which is out of the scope
of this paper. A topology graph T is an undirected graph
that represents the physical topology of the network.

598 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm Overview When the verification engine dis-
covers a violated EC, the algorithm is executed. Its goal
is to repair the detected violations optimally, i.e., with
the minimum number of changes to the original configu-
ration. NEAt formulates the problem as an optimization
problem: we aim to add or delete the minimum num-
ber of edges on `c so that the modified `c complies with
℘c. ℘c is a subgraph of ℘ that is relevant to EC c. Note
that the added edges are constrained within the topology
graph T . We solve the optimization problem using ILP.

Subsection §5.1 describes the repair algorithm for ba-
sic reachability policies, and subsection §5.2 enhances
the basic algorithm to cope with the entire set of policies
in §4. We complete the section with our repair algorithm
for forwarding loops (§5.3). Table 1 summarizes the key
notations used in this section and the next section §6.

Symbol Description
`c The configuration graph for EC c.
℘ The policy graph.
T The topology graph.
(i, j) The edge from node i to node j.
ρi j The paths between node i and node j.
Cc

i The cluster of node i for equivalence class c.
ci The compressed node i for Cc

i .
Ea The set of all edges in graph a.
N(Ea) Number of all edges in graph a.
NBa(i) The set of neighbors of node i in graph a.

Table 1: Key notations in problem formulation.

5.1 Repair Basic Reachability
We start with the basic case where ℘c contains only
reachability constraints. Our integer program has a set
of binary decision variables xi, j,p,q and xi, j where

xi, j,p,q,(i, j) ∈ ET ,(p,q) ∈ E℘c (1)

xi, j,(i, j) ∈ ET (2)

ET and E℘c denote the set of all edges in T and ℘c re-
spectively. Variable xi, j,p,q defines the mapping between
a physical edge and a policy graph edge. It is one if a
directed edge (i, j) is mapped to policy edge (p,q) for
the current EC c, i.e., the flow from p to q will be for-
warded through edge (i, j) from i to j. Variable xi, j de-
fines whether edge (i, j) is used for forwarding this EC’s
traffic regardless of which flow uses it. Edge (i, j) in T
is selected if any flow (p,q) is forwarded through (i, j)
(Equation 3). Similarly, for the other direction (j, i), we
have Equation 4. No physical link can be selected to for-
ward traffic for the same EC on both directions (Equation
5) to avoid loops.

∀(i, j) xi, j ≥ ∑
(p,q)∈E℘c

xi, j,p,q

N(E℘)
(3)

∀(j, i) x j,i ≥ ∑
(p,q)∈E℘c

x j,i,p,q

N(E℘)
(4)

∀(j, i) xi, j + x j,i ≤ 1 (5)

Equations 6-8 are the flow conservation equations for
policy level reachability (p,q). ∀(p,q),∀i ∈ T :{

∑ j∈NBT (i) xi, j,p,q = 1

∑ j∈NBT (i) x j,i,p,q = 0
if i = p (6){

∑ j∈NBT (i) xi, j,p,q = 0

∑ j∈NBT (i) x j,i,p,q = 1
if i = q (7){

∑ j∈NBT (i)(xi, j,p,q− x j,i,p,q) = 0 otherwise (8)

The optimization objective is to minimize the number
of changes (additions and deletions) on the original con-
figuration graph `c.

min (∑
(i, j)/∈E`c

xi, j− ∑
(i, j)∈E`c

xi, j) (9)

5.2 Generalizing the Algorithm
To support generalized reachability policies in §4, we
encode several additional constraints into the ILP.
Isolation We introduce a special DROP node. If two
nodes are required to be isolated, i.e., the nodes are con-
nected with a (0,∗) edge in the policy graph, we change
the way flow conservation equations are defined. In par-
ticular, we replace Equation 7 with Equations 10 and 11
below in the flow conservation equations. That is, a flow
from p to q should sink at DROP before reaching q.{

∑ j∈NBT (i) xi, j,p,q = 0

∑ j∈NBT (i) x j,i,p,q = 1
if i = DROP (10){

∑ j∈NBT (i) xi, j,p,q = 0 if i = q (11)

Service Chaining With service chaining, or waypoint-
ing, we enhance our flow conservation equations with
Equation 12. It extends the definition beyond individ-
ual reachability segments (policy graph edges), by taking
into account dependencies between policy edges. The
resulting mapping is guaranteed to satisfy chaining of
reachability requirements. For instance, if a policy node
i is required to reach q through p, because of this equa-
tion, node i in the configuration graph is not allowed to
carry flow from p to q. Without this equation, p might
be skipped on the path from i to q.{

∑ j∈NBT (i) xi, j,p,q = 0

∑ j∈NBT (i) x j,i,p,q = 0
if i ∈℘c and (∃ρi,por ∃ρq,i)

(12)
Bounded or Equal Path Length/Shortest Path If a
path length bound n is specified for a policy edge (p,q),
then a new constraint is added (Equation 13):

∑
(i, j)∈ET

(xi, j,p,q + x j,i,p,q)≤ n (13)

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 599

Multipath If at least m link-disjoint paths are required
for flow (p,q), then the flow conservation equations 6
and 7 are updated as Equation 14 and 15 respectively.
Multipath requirements are enforced throughout the dis-
tance between two end nodes by Equation 8.{

∑ j∈NBT (i) xi, j,p,q ≥ m

∑ j∈NBT (i) x j,i,p,q = 0
if i = p (14){

∑ j∈NBT (i) xi, j,p,q = 0

∑ j∈NBT (i) x j,i,p,q ≥ m
if i = q (15)

Load Balancing As discussed in §4, policy edges within
a load balancing policy are denoted with a decimal path
count. Correspondingly, in our optimization problem,
variables that map physical edges to policy edges are also
decimal values between zero and one, instead of binary
values. In addition, we introduce a new equation (Equa-
tion 16) to capture how flow distribution propagates.

∏
xi, j,p,q 6=0

xi, j,p,q = m (16)

For example, consider the network in Figure 6, where
there are two layers of load balancing between client C
and servers S1 S5. If the policy in Figure 5 is required,
the solutions for variables (xi, j) are shown in Figure 6.

LB1

LB2
(2 ⁄5,*)

LB3

(3 ⁄5,*)

S1
(1 ⁄2,*)

S2
(1 ⁄2,*)

S3(1 ⁄3,*)

S4
(1 ⁄3,*)

S5

(1 ⁄3,*)

C

Figure 6: Load Balancing Configuration.

5.3 Repairing Loops
The preceding repair algorithm operates on a loop-free
configuration graph. As such, we first check for and re-
move loops from each configuration graph before com-
pressing and repairing violations of any other property
type. Our objective for repairing loops is to minimize
change to the network, with a preference to affect few
equivalence classes as possible, as well as removed the
minimal number of rules. Thus, our algorithm will re-
move a forwarding rule matching packets destined to
10.0.0.1/32 over one for 10.0.0.0/8. Since loops are re-
paired first, and NEAt will later check reachability prop-
erties on each equivalence class, our loop repair algo-
rithm does not need to consider introducing permanent
reachability violations by removing rules.

Algorithm 1 presents our loop repair algorithm. Θ(c)
denotes the set of all loops appearing in a configuration
graph `c and N(Θ(c)) the number of loops in `c. θi is a

Algorithm 1 Loop repair
procedure REMOVELOOP(`c, Θ(c))

remove edges appearing in multiple loops
remove {(i, j) | (i, j) ∈ θk ∧ (i, j) ∈ θm∀k,m ∈Θ(c)}
if N(Θ(c)) = 0 then

return `c

for all θi ∈Θ(c) do
while N(θi)> 0 do

remove edges forwarded out the destination
remove (i, j) if i is destination

while N(θi)> 0 do
remove most specific forwarding rule
remove (i, j) ∈ θi with longest prefix

return `c

subgraph of `c, and N(θi) = 0 when the subgraph con-
tains no loops. The algorithm begins by finding and re-
moving all intersecting edges across `c’s loops. For each
loop in `c that is not repaired by removing these edges,
next remove an edge (i, j) where i’s IP address is the des-
tination, if such an edge exists. While θi still has loops,
remove an edge in the loop which has the most specific
match rule (e.g., longest prefix). Each edge is mapped to
a specific forwarding rule at a particular switch when we
compute the equivalence classes.

Removal of a forwarding rule is accomplished by re-
place it with a drop rule, to prevent a coarser match
from introducing another loop. For example, if a rule
matching destination IP 10.0.0.1/32 is simply deleted
from a switch’s forwarding table, another rule match-
ing 10.0.0.1/31 on the same switch and forwarding to
the same next hop could prevent the loop from being re-
paired. To conserve switch memory during in response
repairs, NEAt checks all coarser drop rules to determine
if multiple rules can be aggregated together.

6 Optimizations

While conceptually straightforward, the repair algorithm
in section 5 does not scale to well. In the optimization
problem formulation, the number of variables for one EC
is approximately the product of the number of topology
links and the number of policy graph edges, which can
easily exceed 100k. In this section, we present two tech-
niques that dramatically optimize the repair speed.

6.1 Topology Limitation

This technique aims to “slice” away irrelevant or redun-
dant part of the network, and thus shrink the size of
the optimization problem. After getting a configuration
graph that violates some policies, before passing it to the
optimizer, we first remove disconnected components on

600 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the physical topology. Next, we localize the potential af-
fected area on the topology. Fortunately, most modern
networks are designed in a hierarchical structure. Exam-
ples include data centers arranged in a fattree topology,
and enterprise networks divided into multiple sites joint
by a backbone network. Such a structure implies certain
communication pattern: communication within a subtree
should stay local, for example, and communication be-
tween subtrees normally doesn’t traverse other subtrees,
i.e., go through a valley. In our linear programming prob-
lem, typically only a subset of the topology edges is con-
sidered mappable to a policy edge. Results in section 8
shows the effectiveness of this technique.

6.2 Graph Compression
Besides hierarchical structures, most large networks are
designed in patterns that enforce symmetry to some ex-
tent [22] for load balancing or resilience reasons. For
example, in a data center fattree topology, devices on the
same layer (access, aggregate, core) are symmetrically
connected to multiple devices on the neighboring lay-
ers. We exploit such regularities to compress the graphs.
The key to the compression is that the compressed graphs
must be equivalent to the original graphs with respect to
the policies of interest. To this end, we leverage a graph
pattern preserving compression [10] as the major build-
ing block of NEAt’s compressor (Figure 1). The algo-
rithm compresses a labeled directed graph according to
the following bisimulation relation:
Bisimulation Relation [9] We denote G = (V,E,L) as
a labeled directed graph. V represents a set of node and
(u,v)∈ E represents a directed edge from node u to node
v. L(u) ∈ Γ represents the label of node u, where Γ is the
set of labels that applied to V . In the networked system
context, the labels may represent a set of similar func-
tional networking nodes, e.g. hosts, firewalls, load bal-
ancers. For example, in Figure 7(a), we label the network
nodes as Firewall, Edge Router and Core Router and we
label the two hosts as HostA and HostB.

A bisimulation relation on a graph G = (V,E,L) is a
binary relation BR⊆V ×V such that for all (u,v) ∈ BR:
(a) L(u) = L(v);
(b) ∀(u,u′) ∈ E, ∃(v,v′) ∈ E such that (u′,v′) ∈ BR;
(c) ∀(v,v′) ∈ E, ∃(u,u′) ∈ E such that (u′,v′) ∈ BR.

In Figure 7(a), Firewall2 and Firewall3 are bisimular to
each other, while Firewall1 is not bisimular to any other
firewall. Because HostB is solely in a bisimular clus-
ter, and hence EdgeRouter1 and EdgeRouter2 are bisim-
ular as they only has one child HostB. As Firewall2
and Firewall3 have the children that are bisimular, they
are also bisimular to each other. While Firewall1’s child
is Core Router, which has a different label than Edge
Router, Firewall1 is not bisimular to anyone.

Bisimulation Based Compression

(a) Configuration graph `c (b) Compressed configura-
tion graph `cp

c

Figure 7: Example of compression

Algorithm 2 presents the compression algorithm on
the given graphs `c, ℘c and T , where `c and T are
compressed according to ℘c. Before the compression,
we need to first label the nodes in `c and T according
to ℘c: all the nodes that are presented in ℘c are la-
beled uniquely. Therefore, the information in the pol-
icy graphs will not be lost after compression. We then
compute bisimulation relation on `c using the algorithms
presented in [9] and then compress the graphs based on
the bisimularity. However, unlike `c and ℘c, T is not a
directed graph, and thus the original algorithm is not ap-
plicable. To compute T cp, we first compress the parts in
T that overlap with `c according to the undirected version
of `cp

c . Then we draw edges between the non-overlapping
parts and the compressed parts with their original edges
in T . The time complexity of the compression algorithm
is O(|E|log|V |). Figure 7(b) shows the compression re-
sult on graph `c. Firewall2 and Firewall3 are bisimu-
lar and are compressed to a new clustering named FW2.
Firewall1 stays by itself as FW1.

Algorithm 2 Graph pattern preserving compression
procedure GRAPHCOMPRESSION(`c, ℘c, T)

compute the maximum bisimulation relation BR of `c
compute the clusters clusters = V/BR
collapse the nodes in the each cluster ∈ clusters
compute compressed `

cp
c , T cp

return `
cp
c , T cp

We evaluate the compression algorithm on a simulated
fattree topology and a large enterprise network. We de-
notes the compression rate rc as the ratio of the number
of the remaining nodes in `cp

c to the number of the nodes
in `c. From the compression result shown in Table 2, we
can conclude that the compression algorithm could result
in a much smaller graph for a large-scale network.

Topology 1− rc
Fattree (6750 hosts, 1125 switches) 99.38%
Enterprise (236 routers) 88.98%

Table 2: Compression results.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 601

Incremental Compression Further leveraging the in-
cremental compression algorithm from [10], we incre-
mentally maintain the compressed configuration graphs.
In response to changes to the original graphs, the incre-
mental algorithm computes the new compressed graph
using the changes and the compressed graph as input, in-
dependent of the original graph. That is there is no need
to decompress the graph to propagate the changes.
Repair Compressed Graphs With the compression
module in place, when a violation is detected, the graphs
are compressed first, then passed to the optimizer. Note
that one compressed edge may represent a collection of
edges in the original graph. This works fine with single-
path reachability type of policies, such as reachability,
isolation, service chaining. However, it will break Equa-
tion 14 and 15 for link-disjoint multipath policy. Our
solution is to label the predecessors of each multipath
policy destination node (E.g., q for policy edge (p,q))
differently, such that they are not compressed. In ad-
dition, T cp is modeled as a weighted graph, where the
weight on each edge is the number of original edges that
the compressed edge represents. Multipath policy con-
straint Equation 14 is modified as shown Equation 17,
while Equation 15 remains the same because there are
never multiple edges pointing to the destination node q.{

∑ j∈NBT cp (i)(xi, j,p,q ∗weighti, j)>= m

∑ j∈NBT cp (i) x j,i,p,q = 0
if i = p

(17)
Map Back The last step is to map the result back to
the original graph `c. The optimization result is a set
of changes (added or deleted edges) on the compressed
graph `cp

c . To map back to `c, a changed edge (ci,c j)
could become a set of changed edges between the clus-
ter Cc

i and cluster Cc
j . If an edge (ci,c j) is supposed to

be added to `cp
c , then on `c, for every node i in the source

cluster Cc
i , there should be an edge added from i to one of

its neighbor node j that is in the target cluster Cc
j . It does

not matter which neighbor node is chosen, because all
the nodes in Cc

j are equivalent with regard to the policies,
which is why they are clustered as one node. In the cur-
rent design, every policy node represents a physical node,
and thus a policy edge represents a one-to-one connec-
tion. However, in the future, we plan to also compress
the policy graphs, enabling a policy graph node repre-
senting a cluster of nodes with similar functions. This
enables policy graph edges to denote various types of
connection, for example, any-to-any, one-to-many. Af-
terwards, those computed changes will be translated into
forwarding instructions, and sent to the network devices.
Policy Perseverance Finally, we prove that the Graph-
Compression algorithm (Algorithm 2) preserves the
equivalence between the compressed graph Gc and the
original graph G with respect to the scope of policies

in section 4. As loops are repaired before the graph
is compressed (§5.3), the input (G) and output (GC) of
the compression algorithm are equivalent with respect to
the loop policy. Furthermore, on a loop-free graph, the
compressed graph is proven in [10] to be equivalent to
the original graph for graph pattern queries. Therefore,
single-path reachability policies with bounded length and
waypointing constraints are equivalent on both graphs.
More specifically, let us denote Qr(v,u) as the reachabil-
ity query between v and u. Intuitively, for each Qr(v,u)
for G, one can show by contradiction that there exists a
path from v to u in G if and only if cv can reach cu. Sim-
ilarly, the isolation policy is preserved, as ρcv,cu exists iff
ρv,u exists. Further, as reachability is preserved, for each
edge (m,n) ∈ G, there exists an edge (cm,cn) ∈ Gc, i.e.,
the length of any path is the same on G and Gc.

The load balancing and multi-path policies are more
complex. We can break the load balancing policy into
two requirements: pool and balancing. Pool in this con-
text denotes that traffic from a single source is distributed
to all of a fixed pool of nodes, which is naturally pre-
served as a reachability requirement. Balancing denotes
the amount of traffic distributed to each node in the pool
is equal to the amount specified by the operator. Bal-
ancing is enforced by Equation 16. Since paths are not
shortened by the compression algorithm, if Equation 16
holds on Gc, it also holds on G.

We prove that this conclusion also holds for multipath
policy in Appendix A. Intuitively, as the predecessors of
multipath destinations in are not compressed, the link-
disjoint multipath criteria is preserved after compression
through the bisimulation relation back propagation and
flow conservation constraints.

7 Implementation

We implemented a prototype of NEAt in Python. NEAt
requires no modifications to the controller or switches.
The verification engine is based on prior work [19] and
we use the Gurobi Optimizer [3] within our optimization
engine to solve the ILP.

NEAt’s pass-through mode is implemented as a proxy
between the controller and switches, listening for flow
modification messages. The interactive mode is imple-
mented as an XML-RPC API, allowing it to be compat-
ible with applications written in any language or for any
controller. In particular, NEAt exposes a check() func-
tion that accepts a set of OpenFlow flow modification
messages to check against the network policy. NEAt up-
dates the network model with the proposed changes, ver-
ifies the model, and searches for a set of repairs if any
violations are found. The application can choose to re-
ceive the repairs as a set of OpenFlow flow modification
messages or as a set of edge tuples. For example, a load

602 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1

seconds

with both optimizations
with topology limitation

with clustering
w/o optimizations

Figure 8: Effect of optimizations

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1

seconds

one pod pair reachability
all pair reachability
policy combination

Figure 10: Different policies.

balancer application may wish to receive a repairs as a set
of tuples (e.g., [(s2, h1)]) to easily re-assign a client to
a particular server replica, rather than parsing an Open-
Flow message from NEAt.

8 Evaluation

In this section, we examine the performance of repairs
in NEAt, as well as the end-to-end latency experienced
by applications. All experiments were run on a Dell
Precision 5810 with a 2.6GHz Xeon E5-2697V3 CPU
and 128GB RAM. We use an unmodified version of
Gurobi [3] with default options in our experiments.

8.1 Repair Performance
To evaluate the feasibility and scalability of NEAt’s re-
pair process, we synthesized a set of fattree topologies
with various sizes, and used NEAt to maintain a vari-
ety of network-wide policies, including reachability, seg-
mentation, bounded path length and multipath policies.
More specifically, on each topology, under random re-
movals of rules, we measured the repair time for each
removal that caused a violation.

8.1.1 Exact matching rules

We first focus on flow-based traffic management appli-
cations, which are widely used in SDN [7, 12, 14–16].
Any forwarding rule produced by such applications at a
switch matches at most one flow. In our terms, each rule
only affects at most one EC.

For each fattree topology, we randomly selected a pair
of pods. Suppose the desired policy is that any host in

one of the pods should be able to reach every other host in
both selected pods, which we will refer to as a pod-pair
reachability policy. With random removals of rules, for
those removals resulting in violations to pod-pair reach-
ability, the optimization engine is triggered to perform
the repair. For testing purposes, we re-verify the policy
after each repair, and the check passed for all cases.

On a fattree topology with 250 hosts and 125 switches,
we measured the time taken to repair pod-pair reach-
ability policy by four mechanisms: (1) plain mapping,
(2) mapping with topology limitation, (3) mapping with
graph compression, and (4) mapping with both compres-
sion and topology limitation. Figure 8 compares the
CDFs of the repair time for these four repair mecha-
nisms: We can see the combination of graph compres-
sion and topology limitation (left most curve) brings ap-
proximately one order of magnitude speed-up over plain
mapping (right most curve). Figure 9 (a-e) shows the
amount of speed-up goes up as the network size scales.
Even on a network with 686 hosts and 245 switches, the
repair time is bounded under 0.1 second for the majority
case, close to 1/20 of the repair time by plain mapping.

We next explored how NEAt handles a larger set of
policies and a combination of different types of policies.
We first assumed the desired policy being every pair of
hosts should be able to reach each other , which we will
refer to as an all-pair reachability policy. Again, on a
fattree topology with 250 hosts and 125 switches, the re-
pair time under random rule removals against this all-
pair reachability policy was measured, as shown in Fig-
ure 10. The policy size is increased by approximately
10 times compared with pod-pair reachability policy, but
the repair time only increases slightly.

To test a even more complex setting, next we ran-
domly selected three pods in the fattree. Between the
first two pods, hosts should be isolated from each other
(segmentation), and between the first and third selected
pods, hosts are connected by at least two path (multi-
path). For host pairs that do not fall into the previous
two conditions, they are supposed to be able to reach
each other (all-pair reachability). Both multipath and
all-pair reachability are combined with a bounded path
length policy, to avoid flows between pods ”go through
a valley”. Note that unlike the previous pure single-path
reachability policy, where repairs are all edge additions,
in this case, a repair is sometimes a mix of edge additions
and deletions. What’s more, to satisfy multipath require-
ment, more additions are necessary. Due to this com-
plexity, the repair time is increased, but still on the same
order of magnitude of reachability policy cases, as shown
in Figure 10. As verified by the re-checks, changes for
fixing different types of policies keep other policy intact.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 603

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1

seconds

Opt
Plain

(a) 54 hosts, 45 switches

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1

seconds

Opt
Plain

(b) 128 hosts, 80 switches

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1

seconds

Opt
Plain

(c) 250 hosts, 125 switches

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1

seconds

Opt
Plain

(d) 432 hosts, 180 switches

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10

seconds

Opt
Plain

(e) 686 hosts, 245 switches

Figure 9: Repair time comparison under random removals of exactly matching rules

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1

seconds

exact all-pair
subnet all-pair

Figure 11: Exact matching rules vs. overlapping rules

8.1.2 Overlapping rules

For networks that use wild-carded rules or longest pre-
fix matching, the assumption in the previous subsection
does not hold. One rule may affect multiple ECs, and
thus potentially trigger repairs on multiple graphs. For-
tunately, there is a trend to move such overlapping rules
to network edge or even hosts [5, 8, 20], leaving the core
with exactly matching rules. In order to study how NEAt
performs under this less preferable but less common sce-
nario, we assign IP addresses within the same prefix sub-
net to hosts within the same pod on the fattree topolo-
gies. We then aggregated rules on the switches as much
as possible. For example, each core switch has only k
forwarding rules, where k is the number of pods, and
each rule matches on one pod’s prefix. Similar to the
previous experiments, we used NEAt to guarantee an all-
pair reachability policy, and our engine discovered re-
pairs for all violations. Figure 11 compares the CDFs
of the repair time for overlapping rules and exact match-
ing rules on a 250-host-125-switch fattree topology. The
repair took longer compared to applications with exact
match rules because of the increased number of affected
ECs. With our graph compression and topology limita-
tion techniques, optimization is able to finish under 0.4
seconds in the worst case.

8.2 End-to-End Delay

Next, we examine the application-level delay introduced
by NEAt when using its interactive mode. We test NEAt
on various-sized fattree topologies using Mininet [4] and
the Pox controller [6]. A learning switch application
and load balancer application run on top of Pox. The
load balancer balances flows between the two replicas
in a round-robin fashion, and we modify it to leverage
NEAt’s API to check the assignment of clients to repli-

 0

 40

 80

 120

 160

 200

 240

 280

(16, 20, 96)

(54, 45, 324)

(128, 80, 768)

La
te

n
cy

 (
m

s)

Topology Size (#hosts, #switches, #links)

comp+limit
nocomp+limit
comp+nolimit

nocomp+nolimit

Figure 12: Application-perceived latency of NEAt, on vari-
ous fattree topologies, showing performance for a reachability
policy with/without graph compression and topology limitation

cas. If NEAt suggests a repair, the application updates its
client-to-replica mapping with one suggested by NEAt.
While the learning switch remains unmodified and un-
aware of NEAt, its updates are transparently checked by
NEAt. This setup demonstrates the ability of NEAt to
interact with the controller and applications simultane-
ously through its two interactive modes.

The load balancer application runs on an edge switch
in the fattree topology, with clients and server replicas
placed in different pods. To trigger an update, a client
pings the virtual IP of the load balancer. When the ap-
propriate event handler in the load balancer is execute, it
invokes NEAt’s check() function. We measure the to-
tal latency introduced by NEAt as the time to invoke the
check() function and apply it to the application’s state.
This includes the time to verify an update (i.e, calculate
equivalence classes affected by the update, compute their
configuration graphs, and verify them) and repair viola-
tions in any of the affected equivalence classes.

For each topology size, we examine the total latency
for a reachability policy, with and without our compres-
sion and topology limitation optimizations. Figure 12
shows the total delay experienced by the load balancer.
Topology limitation has the largest speed-up of our opti-
mizations, but when used in combination with compres-
sion of the topology and configuration graphs, NEAt can
verify and repair an update in under 120ms.

8.3 Enterprise Network Trace Study

Finally, we examine traces from a large enterprise net-
work, to examine NEAt’s performance on real forward-

604 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ing graphs. We examine two dumps of the data plane
from 2014 and 2017. These datasets containing more
than one million forwarding rules across more than 200
forwarding devices. The 2014 dataset contains 27k
equivalence classes, while the 2017 trace contains 285k.

8.3.1 Bugs

For each dataset, we construct loop and reachability poli-
cies and check for violations. In the 2014 dataset, NEAt
finds nine different loops. In the 2017 dataset, NEAt
finds 19. We examine the forwarding table and find sev-
eral of these are caused by default routes with prefix
0.0.0.0/0. Only equivalence classes with more specific
rules on the device are free of loops in these cases. An-
other cause we discover is load balancing — a device can
forward packets out one of two ports, one of which will
result in a path containing a loop.

8.3.2 Synthetic Updates

Next, we use the 2017 dataset to evaluate NEAt’s on a
data plane with a realistic number of equivalence classes.
First, we repair any loops in the dataset’s 285k equiv-
alence classes. We then construct synthetic updates,
choosing a destination IP address and prefix length with
the same probability as they appear in the dataset’s for-
warding rules. An update can add a rule, delete a rule,
or introduce a loop. Loops are chosen from the list of
those that were discovered and repaired in the first step.
An update has a 10% chance of introducing one of these
loops for a particular update, which may introduce loops
in multiple ECs. We generated 100 updates in this man-
ner, which affected an average of eight ECs per update.

We apply the set of random updates to different com-
binations of policies, including loop-freedom, reachabil-
ity, and our compression and topology limitation opti-
mizations. Since the compression and topology limita-
tion optimizations only apply to the reachability policy,
we do not test loop freedom with compression or topol-
ogy limitation. Figure 13 shows a CDF of the total up-
date time, including verification and repairs (when nec-
essary). Of the 100 updates, 20 loops violations needed
repair, as well as 24 reachability violations. Median and
98th percentile update times were 10ms and 1300ms, re-
spectively, for a reachability policy with compression
and topology limitation enabled. For a loop freedom
property, median and 98th percentile update times were
35ms and 730ms, respectively. Combining these two
policies, without compression or topology limitation op-
timizations, resulted in median and 98th percentile times
of 36ms and 193 seconds. Adding our two optimizations
reduced these times to 36ms and six seconds.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100 1000 10000 100000 1x106

latency (ms)

[loops]
[loop+reach]

[loops+reach]+comp+limit
[reach]+comp+limit

Figure 13: Total update time for different policies and opti-
mizations, on a model of a real-world data plane trace

Topology Size NEAt NetGen NetGen-C
(16, 20, 96) 5.9ms 743.2ms 513.2ms

(54, 45, 324) 7.2ms 4404.0ms 1160.8ms
(128, 80, 768) 9.0ms 16337.7ms 2056.3ms

Table 3: Repair time of an all-pair reachability property in
NEAt, NetGen [26], and NetGen using our clustering algo-
rithm (NetGen-C) on fattree topologies. Topology size is mea-
sured as (#hosts, #switches, #edges).

8.4 Repair vs. Synthesis
In the context of this work, we distinguish between re-
pair and synthesis based on the scope and urgency of the
change. We envision repair as a tool for temporary and
immediate application on a time scale too small for hu-
man intervention. For example, the scope of NEAt’s re-
pair is limited to forwarding actions after a single update
to the data plane. We consider synthesis, on the other
hand, to be useful for construction of longer-lived con-
figurations and programs, without the need for a partial
implementation, or changes of a larger scope.

In this section, we compare NEAt with NetGen [26],
a tool to synthesize data plane changes using an SMT
formulation. NetGen’s specification language uses reg-
ular expressions to both select candidate ECs and de-
scribe changes to paths within them. In Table 3, we
compare NEAt and NetGen under a repair scenario sim-
ilar to § 8.1.1. We remove a single forwarding rule from
the data plane on various-sized fattree topologies to in-
troduce a violation, and measure the median repair time
over 10 trials. For NEAt, we use both graph compres-
sion and topology limitation. For NetGen, we report
results for the original approach operating on uncom-
pressed configuration graphs, as well as a modified ver-
sion that leverages our graph compression. We can see
NEAt achieves performance up to two orders of magni-
tude faster than the modified version of NetGen, and up
to four orders of magnitude faster than the unmodified
version of NetGen.

In Table 4, we evaluate NEAt and NetGen under a syn-
thesis scenario and generate an entire data plane from
scratch. Specifically, we use NEAt and NetGen to “re-
pair” an empty configuration graph and report the to-
tal time to repair an all-pair reachability policy. Since

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 605

Topology Size NEAt NetGen
(16, 20, 96) 921.7ms 7.1min

(54, 45, 324) 16.3ms 381.7min
(128, 80, 768) 2.9min 173.2hrs

Table 4: Synthesis time of an all-pair reachability property on
an empty configuration graph using fattree topologies. Topol-
ogy size is measured as (#hosts, #switches, #edges).

NEAt’s policies are graph-based, we express the reach-
ability policy with a single policy graph. As NetGen’s
specification is path-based, we encode the policy as a
separate data plane change (i.e., regular expression) for
each pair of nodes. For NEAt, we report the repair time
with our topology limitation optimization. We do not
report results with our clustering algorithm, as it is not
applicable when the configuration graph is empty. We
can see NEAt repairs an empty configuration graph more
than 1000X faster than NetGen.

9 Related Work

SDN programming languages: Many programming
languages have been proposed to provide abstractions
to program SDNs, e.g., Frenetic [11], Pyretic [24] and
Maple [29]. These allow programmers to compose com-
plex rules without manually resolving conflicts between
rules. However, these languages face limitations of ex-
pressing general policies that deliver higher-level intent,
such as middleware functionality or QoS constraints.
SDN synthesis platforms: Network state can also be
synthesized from a set of pre-specified correctness crite-
ria. NetGen [26], for example, takes as input a specifi-
cation using regular expressions to define paths changes
and a set of ECs to modify. It uses an SMT solver to
find the minimal number of changes. However, similar
to Merlin [28] and FatTire [25], this tool is designed to
be used as compiler, with performance that is too slow
for real-time applications (i.e., minute-scale synthesis).
Instead, NEAT formulates repairs as an ILP and discov-
ers possible repairs in under a second. While using Net-
Gen in place of our ILP is possible, certain policies can-
not be expressed in NetGen’s language, such as multi-
path and load balancing. Similarly, Marham [13] pro-
poses a framework for automated repair, but with per-
formance on the order of several seconds for topologies
with dozens of nodes and links. Margrave [21] analyzes
changes to access control policy changes, highlighting to
an operator the effect it has on the policy, without sug-
gesting repairs to violations.

10 Limitation and Discussion

Stateful Network Applications Some stateful network
applications keep internal state to provide finer grained

control of network traffic. The internal state is normally
constructed based on the current network state. Under
pass-through mode, as NEAt verifies and corrects rule in-
sertions without notifying the application, network state
might become different from the application’s internal
state. If improperly written, the application might crash.
We note that this is true for many platforms which vir-
tualize the network [27]. This might sound unsatisfac-
tory yet it is likely desirable, since the application may
be developed by an untrusted third party, and NEAt can
protect the network from unforeseen bugs or undesir-
able behavior of that application. If desired, applications
could be implemented with NEAt in mind. We encour-
age developers to use interactive mode for stateful appli-
cations.

Evolving Policies In practice, the policy graph can
change over time, on human time scales as network oper-
ators revise and evolve earlier policy decisions. To sim-
plify processing, NEAt can pause updates while the pol-
icy graph is updated. Since loading a new policy graph
is a nearly-instantaneous process, this procedure intro-
duces minimal delay in updates reaching the network. In
future work, we plan to examine how NEAt handles such
scenarios, and make design improvements if needed.

Different Optimization Goals In the current design of
NEAt, the repair effort uses a minimal number of ed-
its as the optimization goal. In practice, there may be
other goals, for example, ensuring critical traffic free of
congestion, minimizing the amount of traffic shifts, etc.
We plan to extend the design in the future to optimize
user defined utility functions, and study how accurate
NEAt’s solution is under different scenarios, and under
what types of scenarios NEAt is applicable.

11 Conclusion

In this paper we presented NEAt, a system that pro-
vides network administrators with a network analogue
of a smartphone’s autocorrect. As a transparent layer,
NEAt repairs, in real-time, updates from an SDN con-
troller that violate generic policies such as reachability,
service-chaining, and segmentation. NEAt casts the re-
pair process as an optimization problem, and repairs each
update by adding or removing a minimal number of rules
to satisfy the policy. Experiments on large fattree topolo-
gies show our formulation can discover repairs in under
one second for applications with non-overlapping rules,
and two seconds for applications issuing rules with more
complex dependencies. Applying NEAt to a large enter-
prise network uncovered and repaired 28 loops

We thank NSF for supporting this work with grant
CNS 15-13906, and our shepherd Cole Schlesinger and
the anonymous reviewers for their valuable comments.

606 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A Multipath Policy Perseverance

Theorem 1. (Multipath Equivalence): A multipath pol-
icy for a flow (p,q) holds in G iff the policy also holds
for (p,q) in Gc.

Proof. Consider a multipath policy that requires at least
m paths for flow (p,q). Trivially, if a flow (p,q) satisfies
the policy in G, the policy also holds for (p,q) in Gc, and
flow conservation equations (Equation 17, 15 and 8) are
satisfied.

Next, we need to prove when the policy holds in Gc,
i.e., when Equation 17, 15 and 8 are satisfied, it also
holds in G.

Let pathc
1, pathc

2, ... pathc
n (n≤ m) be the set of paths

from p to q in Gc that collectively satisfy Equation 17,
15 and 8. That is, the sum of weights of all paths’ start-
ing edges is m. If n equals m, then there are at least m
link-disjoint paths in Gc between p and q, and thus there
are at least m link-disjoint paths in G, i.e., the policy is
satisfied.

If n is less than m, then there must be at least one
path in Gc, whose starting edge’s weight is more than
one. Let such paths be pathc

m0, ..., pathc
m j, whose start-

ing weights are k0, ..., k j respectively. Consider path
pathc

m0 first. The starting weight being more than one
means that its starting edge is pointing from p to a clus-
ter Cnext which contains at least k0 nodes which are also
p’s successors. Because the predecessors of q are labeled
differently, each of them is a separate cluster. By the def-
inition of bisimulation relation, two nodes are bisimular
(and thus can be clustered together) only if their chil-
dren’s label set are the same. Via back propagation, and
the constraint of Equation 8, there must be at least k0
disjoint paths in G from p’s successors in Cnext to q’s pre-
decessors. When pathc

m0 is expanded in G, it becomes k0
link-disjoint paths. Similarly, suppose we iterate through
all the paths from p to q in Gc and expand each of them
in G. As the sum of the starting weights is equal to m,
there are at least m paths from p to q in G.

References

[1] http://www.infosecurity-
magazine.com/opinions/to-err-is-human-to-
automate-divine/.

[2] http://www.verizonenterprise.com/verizon-
insights-lab/dbir/2016/.

[3] Gurobi optimization. http://www.gurobi.com/.

[4] Mininet: Rapid prototyping
for software defined networks.
http://yuba.stanford.edu/foswiki/bin/view/OpenFlow/Mininet.

[5] Network virtualization for cloud data centers.
http://tinyurl.com/c9jbkuu.

[6] The pox controller. https://github.com/noxrepo/pox.

[7] BENSON, T., ANAND, A., AKELLA, A., AND ZHANG,
M. Microte: Fine grained traffic engineering for data
centers. In Proceedings of the Seventh Conference
on Emerging Networking Experiments and Technolo-
giesperiments and Technologiesnference on emerging
Networking EXperiments and Technologies (CoNEXT)
(2011), ACM, p. 8.

[8] B.RAGHAVAN, M.CASADO, T.KOPONEN,
S.RATNASAMY, AND A.GHODSI, A. S. S. Software-
defined Internet architecture: Decoupling architecture
from infrastructure. In HotNets (2012).

[9] DOVIER, A., PIAZZA, C., AND POLICRITI, A. A
fast bisimulation algorithm. In CAV (2001), vol. 2102,
Springer, pp. 79–90.

[10] FAN, W., LI, J., WANG, X., AND WU, Y. Query pre-
serving graph compression. In Proceedings of the 2012
ACM SIGMOD International Conference on Manage-
ment of Data (2012), ACM, pp. 157–168.

[11] FOSTER, N., HARRISON, R., FREEDMAN, M. J.,
MONSANTO, C., REXFORD, J., STORY, A., AND

WALKER, D. Frenetic: A network programming lan-
guage. In ICFP (2011).

[12] HELLER, B., SEETHARAMAN, S., MAHADEVAN, P.,
YIAKOUMIS, Y., SHARMA, P., BANERJEE, S., AND

MCKEOWN, N. ElasticTree: Saving energy in data cen-
ter networks. In NSDI (2010).

[13] HOJJAT, H., REUMMER, P., MCCLURGH, J., CERNY,
P., AND FOSTER, N. Optimizing horn solvers for net-
work repair. In FMCAD (2016).

[14] HONG, C.-Y., KANDULA, S., MAHAJAN, R., ZHANG,
M., GILL, V., NANDURI, M., AND WATTENHOFER, R.
Achieving high utilization with software-driven wan. In
SIGCOMM (2013).

[15] JAIN, S., KUMAR, A., MANDAL, S., ONG, J.,
POUTIEVSKI, L., SINGH, A., VENKATA, S., WAN-
DERER, J., ZHOU, J., ZHU, M., ZOLLA, J., HOLZLE,
U., STUART, S., AND VAHDAT, A. B4: Experience with
a globally-deployed software defined wan. In SIGCOMM
(2013).

[16] JIN, X., MAHAJAN, R., LIU, H. H., GANDHI, R.,
KANDULA, S., ZHANG, M., REXFORD, J., AND WAT-
TENHOFER, R. Dynamic scheduling of network updates.
In SIGCOMM (2014).

[17] KAZEMIAN, P., CHANG, M., ZENG, H., VARGHESE,
G., MCKEOWN, N., AND WHYTE, S. Real time net-
work policy checking using header space analysis. In
NSDI (2013).

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 607

[18] KAZEMIAN, P., VARGHESE, G., AND MCKEOWN, N.
Header space analysis: Static checking for networks. In
NSDI (2012).

[19] KHURSHID, A., ZOU, X., ZHOU, W., CAESAR, M.,
AND GODFREY, P. B. VeriFlow: Verifying network-
wide invariants in real time. In NSDI (2013).

[20] M.CASADO, T.KOPONEN, S.SHENKER, AND

A.TOOTOONCHIAN. Fabric: A retrospective on
evolving sdn. In HotSDN (2012).

[21] NELSON, T., BARRATT, C., DOUGHERTY, D. J.,
FISLER, K., AND KRISHNAMURTHI, S. The margrave
tool for firewall analysis. In LISA (2010).

[22] PLOTKIN, G. D., BJRNER, N., LOPES, N. P., RY-
BALCHENKO, A., AND VARGHESE, G. Scaling net-
work verification using symmetry and surgery. In POPL
(2016).

[23] PRAKASH, C., LEE, J., TURNER, Y., KANG, J.-M.,
AKELLA, A., BANERJEE, S., CLARK, C., MA, Y.,
SHARMA, P., AND ZHANG, Y. PGA: Using graphs to
express and automatically reconcile network policies. In
SIGCOMM (2015).

[24] REICH, J., MONSANTO, C., FOSTER, N., REXFORD,
J., AND WALKER, D. Modular sdn programming with

pyretic. In USENIX ;login, 38(5) (October 2013), pp. 40–
47.

[25] REITBLATT, M., CANINI, M., GUHA, A., AND FOS-
TER, N. Fattire: Declarative fault tolerance for software-
defined networks. In HotSDN (2013).

[26] SAHA, S., PRABHU, S., AND MADHUSUDAN, P. Net-
Gen: Synthesizing data-plane configurations for network
policies. In SOSR (2015).

[27] SHERWOOD, R., GIBB, G., YAP, K.-K., APPEN-
ZELLER, G., CASADO, M., MCKEOWN, N., AND

PARULKAR, G. Can the production network be the
testbed? In OSDI (2010).

[28] SOULE, R., BASU, S., MARANDI, P. J., PEDONE, F.,
KLEINBERG, R., SIRER, E. G., AND FOSTER, N. Mer-
lin: A language for provisioning network resources. In
CoNEXT (2014).

[29] VOELLMY, A., WANG, J., YANG, Y. R., FORD, B.,
AND HUDAK, P. Maple: Simplifying sdn programming
using algorithmic policies. In SIGCOMM (2013).

[30] ZHOU, W., JIN, D., CROFT, J., CAESAR, M., AND

GODFREY, P. B. Enforcing customizable consistency
properties in software-defined networks. In NSDI (2015).

608 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

