usenix
.’ THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

Enforcing Customizable Consistency Properties
in Software-Defined Networks

Wenxuan Zhou, University of lllinois at Urbana-Champaign;
Dong Jin, lllinois Institute of Technology; Jason Croft, Matthew Caesar,
and P. Brighten Godfrey, University of Illinois at Urbana-Champaign

https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/zhou

This paper is included in the Proceedings of the
12th USENIX Symposium on Networked Systems

Design and Implementation (NSDI '15).
May 4-6, 2015 « Oakland, CA, USA
ISBN 978-1-931971-218

Open Access to the Proceedings of the
12th USENIX Symposium on

Networked Systems Design and
Implementation (NSDI ’15)

Enforcing Customizable Consistency Properties in
Software-Defined Networks

Wenxuan Zhou", Dong Jin™*, Jason Croft”, Matthew Caesar", and P, Brighten Godfrey*

“University of Illinois at Urbana-Champaign
“Illinois Institute of Technology

Abstract

It is critical to ensure that network policy remains con-
sistent during state transitions. However, existing tech-
niques impose a high cost in update delay, and/or FIB
space. We propose the Customizable Consistency Gener-
ator (CCG), a fast and generic framework to support cus-
tomizable consistency policies during network updates.
CCG effectively reduces the task of synthesizing an up-
date plan under the constraint of a given consistency pol-
icy to a verification problem, by checking whether an
update can safely be installed in the network at a par-
ticular time, and greedily processing network state tran-
sitions to heuristically minimize transition delay. We
show a large class of consistency policies are guaranteed
by this greedy heuristic alone; in addition, CCG makes
judicious use of existing heavier-weight network update
mechanisms to provide guarantees when necessary. As
such, CCG nearly achieves the “best of both worlds™:
the efficiency of simply passing through updates in most
cases, with the consistency guarantees of more heavy-
weight techniques. Mininet and physical testbed evalu-
ations demonstrate CCG’s capability to achieve various
types of consistency, such as path and bandwidth proper-
ties, with zero switch memory overhead and up to a 3x
delay reduction compared to previous solutions.

1 Introduction

Network operators often establish a set of correctness
conditions to ensure successful operation of the network,
such as the preference of one path over another, the pre-
vention of untrusted traffic from entering a secure zone,
or loop and black hole avoidance. As networks become
an increasingly crucial backbone for critical services, the
ability to construct networks that obey correctness cri-
teria is becoming even more important. Moreover, as
modern networks are continually changing, it is critical
for them to be correct even during transitions. Thus,
a key challenge is to guarantee that properties are pre-
served during transitions from one correct configuration
to a new correct configuration, which has been referred
as network consistency [25].

Several recent proposed systems [13, 16, 19, 25] con-
sistently update software-defined networks (SDNs), tran-
sitioning between two operator-specified network snap-
shots. However, those methods maintain only specific

properties, and can substantially delay the network up-
date process. Consistent updates [25] (CU), for example,
only guarantees coherence: during a network update any
packet or any flow is processed by either a new or an old
configuration, but never by a mix of the two. This is a rel-
atively strong policy that is sufficient to guarantee a large
class of more specific policies (no loop, firewall traver-
sal, etc.), but it comes at the cost of requiring a two-phase
update mechanism that incurs substantial delay between
the two phases and doubles flow entries temporarily. For
networks that care only about a weaker consistency prop-
erty, e.g., only loop freedom, this overhead is unneces-
sary. At the same time, networks sometimes need prop-
erties beyond what CU provides: CU only enforces prop-
erties on individual flows, but not across flows (e.g., “no
more than two flows on a particular link”). SWAN [13]
and zUpdate [19] also ensure only a specific property, in
their case congestion freedom.

That leads to a question: is it possible to efficiently
maintain customizable correctness policies as the net-
work evolves? Ideally, we want the “best of both
worlds”: the efficiency of simply immediately installing
updates without delay, but the safety of whatever correct-
ness properties are relevant to the network at hand.

We are not the first to define this goal. Recently,
Dionysus [15] proposed to reduce network update time to
just what is necessary to satisfy a certain property. How-
ever, Dionysus requires a rule dependency graph for each
particular invariant, produced by an algorithm specific to
that invariant (the paper presents an algorithm for packet
coherence). For example, a waypointing invariant would
need a new algorithm. Furthermore, the algorithms work
only when forwarding rules match exactly one flow.

We take a different approach that begins with an ob-
servation: synthesizing consistent updates for arbitrary
consistency policies is hard, but network verification on
general policies is comparatively easy, especially now
that real-time data plane verification tools [5, 17, 18] can
verify very generic data-plane properties of a network
state within milliseconds. In fact, as also occurs in do-
mains outside of networking, there is a connection be-
tween synthesis and verification. A feasible update se-
quence is one which the relevant properties are verifiable
at each moment in time. Might a verifier serve as a guide
through the search space of possible update sequences?

USENIX Association

12th USENIX Symposium on Networked Systems Design and Implementation (NSDI "15) 73

Based on that insight, we propose a new consistent
update system, the Customizable Consistency Generator
(CCG), which efficiently and consistently updates SDNs
under customizable properties (invariants), intuitively by
converting the scheduling synthesis problem to a series
of network verification problems. With CCG, network
programmers can express desired invariants using an in-
terface (from [18]) which allows invariants to be defined
as essentially arbitrary functions of a data plane snap-
shot, generally requiring only a few tens of lines of code
to inspect the network model. Next, CCG runs a greedy
algorithm: when a new rule arrives from the SDN con-
troller, CCG checks whether the network would satisfy
the desired invariants if the rule were applied. If so, the
rule is sent without delay; otherwise, it is buffered, and
at each step CCG checks its buffer to see if any rules can
be installed safely (via repeated verifications).

This simplistic algorithm has two key problems. First,
the greedy algorithm may not find the best (e.g., fastest)
update installation sequence, and even worse, it may get
stuck with no update being installable without violat-
ing an invariant. However, we identify a fairly large
scope of policies that are “segment-independent” for
which the heuristic is guaranteed to succeed without
deadlock (§5.2). For non-segment-independent policies,
CCG needs a more heavyweight update technique, such
as Consistent Updates [25] or SWAN [13], to act as a
fallback. But CCG triggers this fallback mechanism only
when the greedy heuristic determines it cannot offer a
feasible update sequence. This is very rare in practice
for the invariants we test (§7), and even when the fall-
back is triggered, only a small part of the transition is
left to be handled by it, so the overhead associated with
the heavyweight mechanism (e.g., delay and temporarily
doubled FIB entries) is avoided as much as possible.

The second challenge lies in the verifier. Existing
real-time data plane verifiers, such as VeriFlow and Net-
Plumber, assume that they have an accurate network-
wide snapshot; but the network is a distributed system
and we cannot know exactly when updates are applied.
To address that, CCG explicitly models the uncertainty
about network state that arises due to timing, through
the use of uncertain forwarding graph (§4), a data struc-
ture that compactly represents the range of possible net-
work behaviors given the available information. Al-
though compact, CCG’s verification engine produces po-
tentially larger models than those of existing tools due to
this “uncertainty” awareness. Moreover, as a subroutine
of the scheduling procedure, the verification function is
called much more frequently than when it is used purely
for verification. For these reasons, a substantial amount
of work went into optimization, as shown in §7.1.

In summary, our contributions are:

e We developed a system, CCG, to efficiently synthe-

size network update orderings to preserve customiz-
able policies as network states evolve.

e We created a graph-based model to capture network
uncertainty, upon which real-time verification is per-
formed (90% of updates verified within 10 us).

e We evaluate the performance of our CCG implemen-
tation in both emulation and a physical testbed, and
demonstrate that CCG offers significant performance
improvement over previous work—up to 3x faster
updates, typically with zero extra FIB entries—while
preserving various levels of consistency.

2 Problem Definition and Related Work
We design CCG to achieve the following objectives:

1) Consistency at Every Step. Network changes can
occur frequently, triggered by the control applications,
changes in traffic load, system upgrades, or even failures.
Even in SDNs with a logically centralized controller, the
asynchronous and distributed nature implies that no sin-
gle component can always obtain a fully up-to-date view
of the entire system. Moreover, data packets from all
possible sources may traverse the network at any time
in any order, interleaving with the network data plane
updates. How can we continuously enforce consistency
properties, given the incomplete and uncertain network
view at the controller?

2) Customizable Consistency Properties. The range
of desired consistency properties of networks is quite di-
verse. For example, the successful operations of some
networks may depend on a set of paths traversing a fire-
wall, certain “classified” hosts being unreachable from
external domains, enforcement of access control to pro-
tect critical assets, balanced load across links, loop free-
dom, etc. As argued in [21], a generic framework to
handle general properties is needed. Researchers have
attempted to ensure certain types of consistency proper-
ties, e.g., loop freedom or absence of packet loss [13,19],
but those studies do not provide a generalized solution.
Dionysus [15], as stated earlier, generalizes the scope of
consistency properties it deals with, but still requires de-
signing specific algorithms for different invariants. Con-
sistent Updates [25] is probably the closest solution to
support general consistency properties because it pro-
vides the relatively strong property of packet coherence
which is sufficient to guarantee many other properties;
but as we will see next, it sacrifices efficiency.

3) Efficient Update Installation. The network
controller should react in a timely fashion to network
changes to minimize the duration of performance drops
and network errors. There have been proposals [13, 16,
19,23,25] that instill correctness according to a specific
consistency property, but these approaches suffer sub-
stantial performance penalties. For example, the wait-
ing time between phases using the two-phase update

74 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI '15)

USENIX Association

scheme proposed in CU [25] is at least the maximum
delay across all the devices, assuming a completely par-
allel implementation. Dionysus [15] was recently pro-
posed to update networks via dynamic scheduling atop
a consistency-preserving dependency graph. However, it
requires implementing a new algorithm and dependency
graph for each new invariant to achieve good perfor-
mance. For example, a packet coherence invariant needs
one algorithm and a waypoint invariant would need an-
other algorithm. In contrast, our approach reduces the
consistency problem to a general network verification
problem, which can take a broad range of invariants as
inputs. In particular, one only needs to specify the ver-
ification function instead of designing a new algorithm.
This approach also grants CCG the ability to deal with
wildcard rules efficiently, in the same way as general ver-
ification tools, whereas Dionysus only works for applica-
tions with exact match on flows or classes of flows.

3 Overview of CCG

CCG converts the update scheduling problem into a
network verification problem. Our overall approach
is shown in Figure 1. Our uncertainty-aware network
model (§4.2) provides a compact symbolic representa-
tion of the different possible states the network could be
in, providing input for the verification engine. The ver-
ification engine is responsible for verifying application
updates against specified invariants and policies (§4.4).
Based on verification results, CCG synthesizes an effi-
cient update plan to preserve policy consistency during
network updates, using the basic heuristic and a more
heavyweight fallback mechanism as backup (§5.1 and
§5.3). One key feature of CCG is that it operates in a
black-box fashion, providing a general platform with a
very flexible notion of consistency. For example, one can
“plug in” a different verification function and a fallback
update scheduling tool to meet one’s customized needs.

Stream of
Updates

ccG Buffer of
pending updates
Uncertainty-aware

Network Model

..............

Verification
Engine No loop/black hole,
Resource isolation,

No suboptimal routing,

NoVLAN leak,

Confirmations

Figure 1: System architecture of CCG.
4 Verification under Uncertainty

We start by describing the problem of network uncer-
tainty (§4.1), and then present our solution to model a
network in the presence of uncertainty (§4.2 and §4.3).

Our design centers around the idea of uncertain forward-
ing graphs, which compactly represent the entire set of
possible network states from the standpoint of packets.
Next, we describe how we use our model to perform
uncertainty-aware network verification (4.4).

4.1 The Network Uncertainty Problem

Networks must disseminate state among distributed
and asynchronous devices, which leads to the inherent
uncertainty that an observation point has in knowing the
current state of the network. We refer to the time period
during which the view of the network from an observa-
tion point (e.g., an SDN controller) might be inconsistent
with the actual network state as temporal network uncer-
tainty. The uncertainty could cause network behaviors to
deviate from the desired invariants temporarily or even
permanently.

Figure 2 shows a motivating example. Initially, switch
A has a forwarding rule directing traffic to switch B. Now
the operator wants to reverse the traffic by issuing two
instructions in sequence: (1) remove the rule on A, and
(2) insert a new rule (directing traffic to A) on B. But it
is possible that the second operation finishes earlier than
the first one, causing a transient loop that leads to packet
losses. That is not an uncommon situation; for example,
three out of eleven bugs found by NICE [7] (BUG V,
IX and XI) are caused by the control programs’ lack of
knowledge of the network states.

v
=38 controller

Remove rule 1
(delayed)
R

Install rule 2

Packet

Switch A Switch B

Figure 2: Example: challenge of modeling networks in the
presence of uncertainty.
Such errors may have serious consequences. In the

previous example, the resulting packet losses could cause
a significant performance drop. A recent study [9] shows
TCP transfers with loss may take five times longer to
complete. Other transient errors could violate security
policy, e.g., malicious packets could enter a secure zone
because of a temporary access control violation [25].

To make matters worse, errors caused by unawareness
of network temporal uncertainty can be permanent. For
instance, a control program initially instructs a switch to
install one rule, and later removes that rule. The two
instructions can be reordered at the switch [11], which
ultimately causes the switch to install a rule that ought to
be removed. The view of the controller and the network
state will remain inconsistent until the rule expires. One
may argue that inserting a barrier message in between
the two instructions would solve the problem. However,
this may harm performance because of increasing control
traffic and switch operations. There are also scenarios in

USENIX Association

12th USENIX Symposium on Networked Systems Design and Implementation (NSDI "15) 75

which carefully crafting an ordering does not help [25].
In addition, it is difficult for a controller to figure out
when to insert the barrier messages. CCG addresses that
by serializing only updates that have potential to cause
race conditions that violate an invariant (§6).

4.2 Uncertainty Model

We first briefly introduce our prior work VeriFlow, a
real-time network-wide data plane verifier. VeriFlow in-
tercepts every update issued by the controller before it
hits the network and verifies its effect in real time. Ver-
iFlow first slices the set of possible packets into Equiv-
alence Classes (ECs) of packets using all existing for-
warding rules and the new update. Each EC is a set
of packets that experiences the same forwarding ac-
tions throughout the network. Next, VeriFlow builds
a forwarding graph for each EC affected by the up-
date, by collecting forwarding rules influencing the EC.
Lastly, VeriFlow traverses each of these graphs to verify
network-wide invariants.

Naively, to model network uncertainty, for every up-
date, we need two graphs to symbolically represent the
network behavior with and without the effect of the up-
date for each influenced EC, until the controller is certain
about the status of the update. If n updates are concur-
rently “in flight” from the controller to the network, we
would need 2" graphs to represent all possible sequences
of update arrivals. Such a state-space explosion will re-
sult in a huge memory requirement and excessive pro-
cessing time to determine consistent update orderings.

To address that, we efficiently model the network
forwarding behavior as a uncertain forwarding graph,
whose links can be marked as certain or uncertain. A
forwarding link is uncertain if the controller does not yet
have information on whether that corresponding update
has been applied to the network. The graph is maintained
by the controller over time. When an update is sent, its
effect is applied to the graph and marked as uncertain.
After receipt of an acknowledgment from the network
that an update has been applied (or after a suitable time-
out), the state of the related forwarding link is changed to
certain. Such a forwarding graph represents all possible
combinations of forwarding decisions at all the devices.

In this way, the extra storage required for uncertainty
modeling is linearly bounded by the number of uncertain
rules. We next examine when we can resolve uncertainty,
either confirming a link as certain or removing it.

4.3 Dynamic Updating of the Model

In order to model the most up-to-date network state,
we need to update the model as changes happen in the
network. At first glance, one might think that could be
done simply by marking forwarding links as uncertain
when new updates are sent, and then, when an ack is re-
ceived from the network, marking them as certain. The

“certain”

N\

“uncertain”

Figure 3: CCG’s uncertain forwarding graph.

problem with that approach is that it may result in incon-
sistencies from the data packets’ perspective. Consider a
network consisting of four switches, as in Figure 4.

Time |
tr @—0—0 [J
|
t —_—
e ° ° ® o packet
o @ O—> 00— 0 | @ switch
S| s2 s3 S4

Figure 4: Example: challenge of dealing with non-atomicity
of packet traversal.

The policy to enforce is that packets from a particu-
lar source entering Switch s1 should not reach Switch s4.
Initially, at time fy, Switch s3 has a filtering rule to drop
packets from that source, whereas all the other switches
simply pass packets through. The operator later wants to
drop packets on s instead of s3. To perform the transi-
tion in a conservative way, the controller first adds a fil-
tering rule on s; at ¢, then removes the filtering rule on
s3 at tp, after the first rule addition has been confirmed.

The forwarding graphs at all steps seem correct. How-
ever, if a packet enters s; before 7; and reaches s3 after
1y, it will reach s4, which violates the policy. Traversal
of a packet over the network is not atomic, interleaving
with network updates, as also observed in [25]. More-
over, [20] recently proved that there are situations where
no correct update order exists. To deal with it, upon re-
ceiving an ack from the network, CCG does not imme-
diately mark the state of the corresponding forwarding
link as certain. Instead, it delays application of the con-
firmation to its internal data structure. In fact, confirma-
tions of additions of forwarding links in the graph model
can be processed immediately, and only confirmations of
removals of forwarding links need to be delayed. The
reason is that we want to ensure we represent all the pos-
sible behaviors of the network. Even after a forwarding
rule has been deleted, packets processed by the rule may
still exist in the network, buffered in an output queue of
that device, in flight, or on other devices.

We have proved that our uncertainty-aware model is
able to accurately capture the view of the network from
the packets’ perspective [2], even for in-flight packets
that have been affected by rules not currently present.

76 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI "15)

USENIX Association

Definition 1. A packet P’s view of the network agrees
with the uncertainty-aware model, if at any time point
during its traversal of the network, the data plane state
that the packet encounters is in the model at that time
point. More specifically, at time t, to P if a link |

e is reachable, | is in the graph model for P at t;

e otherwise, [is definitely not certain in the graph at t.
Theorem 1. Assuming that all data plane changes are
initiated by the controller, any packet’s view of the net-
work agrees with the uncertainty-aware model.

4.4 Uncertainty-aware Verification
Construction of a correct network verification tool is
straightforward with our uncertainty-aware model. By
traversing the uncertainty graph model using directed
graph algorithms, we can answer queries such as whether
a reachable path exists between a pair of nodes. That can
be done in a manner similar to existing network verifi-
cation tools like HSA [17] and VeriFlow [18]. However,
the traversal process needs to be modified to take into
account uncertainty. When traversing an uncertain link,
we need to keep track of the fact that downstream infer-
ences lack certainty. If we reach a node with no certain
outgoing links, it is possible that packets will encounter
a black-hole even with multiple uncertain outgoing links
available. By traversing the graph once, CCG can reason
about the network state correctly in the presence of un-
certainty, determine if an invariant is violated, and output
the set of possible conterexamples (e.g., a packet and the
forwarding table entries that caused the problem).

5 Consistency under Uncertainty

In this section, we describe how we use our model to
efficiently synthesize update sequences that obey a set of
provided invariants (§5.1). We then identify a class of in-
variants that can be guaranteed in this manner (§5.2), and
present our technique to preserve consistency for broader
types of invariants (§5.3).

5.1 Enforcing Correctness with Greedily
Maximized Parallelism

The key goal of our system is to instill user-specified
notions of correctness during network transitions. The
basic idea is relatively straightforward. We construct a
buffer of updates received from the application, and at-
tempt to send them out in FIFO order. Before each up-
date is sent, we check with the verification engine on
whether there is any possibility, given the uncertainty in
network state, that sending it could result in an invariant
violation. If so, the update remains buffered until it is
safe to be sent.

There are two key problems with this approach. The
first is head-of-line blocking: it may be safe to send an
update, but one before it in the queue, which isn’t safe,
could block it. This introduces additional delays in prop-
agating updates. Second, only one update is sent at a

time, which is wasteful—if groups of updates do not con-
flict with each other, they could be sent in parallel.

To address this, CCG provides an algorithm for syn-
thesizing update sequences to networks that greedily
maximizes parallelism while simultaneously obeying the
supplied properties (Algorithm 1).

Whenever an update u is issued from the controller,
CCG intercepts it before it hits the network. Network
forwarding behavior is modeled as an uncertainty graph
(Guncertain) as described previously. Next, the black-
box verification engine takes the graph and the new up-
date as input, and performs a computation to determine
whether there is any possibility that the update will cause
the graph state to violate any policy internally specified
within this engine. If the verification is passed, the up-
date u is sent to the network and also applied to the net-
work model Model, but marked as uncertain. Otherwise,
the update is buffered temporarily in Buf.

When a confirmation of u# from the network arrives,
CCG also intercepts it. The status of u in Model is
changed to certain, either immediately (if # doesn’t re-
move any forwarding link from the graph), or after a de-
lay (if it does, as described in §4.3). The status change of
u may allow some pending updates that previously failed
the verification to pass it. Each of the buffered updates
is processed through the routine of processing a new up-
date, as described above.

In this way, CCG maintains the order of updates only
when it matters. Take the example in Figure 2. If the
deletion of rule 1 is issued before the addition of rule 2 is
confirmed, CCG’s verification engine will capture a pos-
sible loop, and thus will buffer the deletion update. Once
the confirmation of adding rule 2 arrives, CCG checks
buffered updates, and finds out that now it’s safe to issue
the deletion instruction.

5.2 Segment Independence

Next, we identify a class of invariants for which a fea-
sible update ordering exists, and for which CCG’s heuris-
tic will be guaranteed to find one such order. As defined
in [25], trace properties characterize the paths that pack-
ets traverse through the network. This covers many com-
mon network properties, including reachability, access
control, loop freedom, and waypointing. We start with
the assumption that a network configuration applies to
exactly one equivalence class of packets. A network con-
figuration can be expressed as a set of paths that packets
are allowed to take, i.e., a forwarding graph. A configu-
ration transition is equivalent to a transition from an ini-
tial forwarding graph, Gy, to a final graph, G, through a
series of transient graphs, Gy, forr € {1,...,f—1}. We
assume throughout that the invariant of interest is pre-
served in Gy and G;.

USENIX Association

12th USENIX Symposium on Networked Systems Design and Implementation (NSDI "15) 77

Algorithm 1 Maximizing network update parallelism

SchedulelndividualUpdate(Model, Buf ,u)

On issuing u:
Guncertain = ExtractGraph(Model , u)
verify = BlackboxVerification(G ;,cerrqin, 1)
if verify == PASS then

Issue u

Update(Model ,u,uncertain)
else

Buffer u in Buf

On confirming u:
Update(Model,u, certain)
Issue_updates < 0
for u;, € Buf do
Guncertain = ExtractGraph(Model , u;)
verify = BlackboxVerification(G,,ccrtqin, Up)
if verify == PASS then
Remove u;, from Bu f
Update(Model ,uy,, uncertain)
Issue_updates < Issue_updates + uy,

Issue Issue_updates

Loop and black-hole freedom The following theo-
rems were proved for loop freedom [10]: First, given
both Gy and G/ are loop-free, during transition, it is safe
(causing no loop) to update a node in any Gy, if that node
satisfies one of the following two conditions: (1) in G;
it is a leaf node, or all its upstream nodes have been up-
dated with respect to Gy; or (2) in Gy it reaches the des-
tination directly, or all its downstream nodes in Gy have
been updated with respect to Gy. Second, if there are
several updatable nodes in a G;, any update order among
these nodes is loop-free. Third, in any loop-free G; (in-
cluding Gy) that is not Gy, there is at least one node safe
to update, i.e., a loop-free update order always exists.
Similarly, we have the following proved for the black-
hole freedom property [2].
Lemma 1. (Updatable condition): A node update does
not cause any transient black-hole, if in Gy, the node
reaches the destination directly, or in Gy, all its down-
stream nodes in Gy have already been updated.
Proof. By contradiction. Let Ny, Ny,...N,, be downstream
nodes of N, in G¢. Assume Ny, Ni,...N, have been up-
dated with respect to Gy in G;. After updating N, in
G;, Ny, Ni,...N,, become N,’s downstream nodes and all
nodes in the chain from N, to N, have been updated. N,’s
upstream with respect to G, can still reach N,, and thus
reach the downstream of N,. If we assume there is a
black-hole from updating N, there exists a black-hole in
the chain from N, to N,,. Therefore, the black-hole will
existin Gy, and there is a contradiction. O
Lemma 2. (Simultaneous updates): Starting with any
G;, any update order among updatable nodes is black-
hole-free.

Proof. Consider a updatable node N, such that all its
downstream nodes in G have already been updated in
G; (Lemma 1). Then updating any other updatable node
does not change this property. When a node is updatable
it remains updatable even after updating other nodes.
Therefore, if there are several updatable nodes, they can
be updated in any order or simultaneously. O

Theorem 2. (Existence of a black-hole-free update or-
der): In any black-hole-free G, that is not Gy (including
Gy), at least one of the nodes is updatable, i.e., there is a
black-hole-free update order.

Proof. By contradiction. Assume there is a transient
graph G; such that no node is updatable. All nodes are ei-
ther updated or not updatable. As nodes with direct links
to the destination are updatable (Lemma 1), these nodes
can only be updated. Then nodes at previous hop of these
nodes in G; are also updatable (Lemma 1), and therefore
these nodes must also be updated. Continuing, it follows
that all nodes are updated, which is a contradiction as G,
= Gy . As there is always a node updatable in a consis-
tent G;, and the updatable node can be updated to form a
new consistent Gy, the number of updated nodes will in-
crease. Eventually, all nodes will be updated. Therefore
there is a black-hole free update order. OJ

Any update approved by CCG results in a consistent
transient graph, so CCG always finds a consistent update
sequence to ensure loop and black-hole freedom.

Generalized Trace Properties To get a uniform ab-
straction for trace properties, let us first visit the ba-
sic connectivity problem: node A should reach node
B (A — B). To make sure there is connectivity be-
tween two nodes, both black-hole and loop freedom
properties need to hold. Obviously, black-hole free-
dom is downstream-dependent (Theorem 2), whereas
loop freedom is upstream- (updatable condition (1)) or
downstream-dependent (updatable condition (2)), and
thus weaker than black-hole freedom. In other words,
connectivity is a downstream-dependent property, i.e.,
updating from downstream to upstream is sufficient to
ensure it. Fortunately, a number of trace properties,
such as waypointing, access control, service/middle box
chaining, etc., can be broken down to basic connectivity
problems. A common characteristic of such properties is
that flows are required to traverse a set of waypoints.

Definition 2. Waypoints-based trace property: A
property that specifies that each packet should traverse
a set of waypoints (including source and destination) in
a particular order.

Definition 3. Segment dependency: Suppose a trace
property specifies n waypoints, which divide the old
and the new flow path each into (n— 1) segments:
oldy,old,...,old, 1 and newi,news,...,new,_1. If new;

78 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI "15)

USENIX Association

crosses old; (i # j), then the update of segment j is de-
pendent on the update of segment i, i.e., segment j can-
not start to update until segment i’s update has finished,
in order to ensure the traversal of all waypoints.

Otherwise, if segment j starts to update before i has
finished, there might be violations. If j < i, there might
be a moment when the path between waypoints j and
i+ 1 consists only of new; and part of old;, i.e., way-
points (j+ 1)...i are skipped. As in Figure 5(b), B may
be skipped if the AB segment is updated before BC, and
the path is temporarily A — 2 — C.

If j > i, there might be a moment when the
path between waypoints i and (j + 1) consists of
old;,oldiy,...,new;, and a loop is formed. As in Fig-
ure 5(c), the path could temporarily be A - B — 1 — B.

If there is no dependency among segments (Figure 5

(a)), then each can be updated independently simply by
ensuring connectivity between the segment’s endpoints.
That suggests that for paths with no inter-segment de-
pendencies, a property-compliant update order always
exists. Another special case is circular dependency be-
tween segments, as depicted in Figure 5(d), in which no
feasible update order exists.
Theorem 3. [f there is no circular dependency between
segments, then an update order that preserves the re-
quired property always exists. In particular, if policies
are enforcing no more than two waypoints, an update or-
der always exists.

If a policy introduces no circular dependency, i.e., at
least one segment can be updated independently (Fig-
ure 5(a-c)), then we say the policy is segment indepen-
dent. However, in reality, forwarding links and paths
may be shared by different sets of packets, e.g., multi-
ple flows. Thus it is possible that two forwarding links
(smallest possible segments) /; and /, will have conflict-
ing dependencies when serving different groups of pack-
ets, e.g., in forwarding graphs destined to two differ-
ent IP prefixes. In such cases, circular dependencies are
formed across forwarding graphs. Fortunately, forward-
ing graphs do not share links in many cases. For exam-
ple, as pointed out in [15], a number of flow-based traf-
fic management applications for the network core (e.g.,
ElasticTree, MicroTE, B4, SWAN [6, 12-14]), any for-
warding rule at a switch matches at most one flow.

Other Properties There are trace properties which are
not waypoint-based, such as quantitative properties like
path length constraint. To preserve such properties and
waypoint-based trace properties that are not segment in-
dependent, we can use other heavyweight techniques as
a fallback (see 5.3), such as CU [25]. Besides, there
are network properties beyond trace properties, such as
congestion freedom, and it has been proven that care-
ful ordering of updates cannot always guarantee conges-
tion freedom [13,27]. To ensure congestion freedom,

one approach is to use other heavyweight tools, such as
SWAN [13], as a fallback mechanism that the default
heuristic algorithm can trigger only when necessary.

5.3 Synthesis of Consistent Update Sched-
ules

When desired policies do not have the segment-
independence property (§5.2), it is possible that some
buffered updates (through very rare in our experiments)
never pass the verification. For instance, consider a cir-
cular network with three nodes, in which each node has
two types of rules: one type to forward packets to desti-
nations directly connected to itself, and one default rule,
which covers destinations connected to the other two
switches. Initially, default rules point clockwise. They
later change to point counterclockwise. No matter which
of the new default rules changes first, a loop is imme-
diately caused for some destination. The loop freedom
property is not segment-independent in this case, because
each default rule is shared by two equivalence classes
(destined to two hosts), which results in conflicting de-
pendencies among forwarding links.

To handle such scenarios, we adopt a hybrid approach
(Algorithm 2). If the network operators desire some
policies that can be guaranteed by existing solutions,
e.g., CU or SWAN, such solutions can be specified and
plugged in as the fallback mechanism, FB. The stream
of updates is first handled by CCG’s greedy heuristic (Al-
gorithm 1) as long as the policy is preserved. Updates
that violate the policy are buffered temporarily. When
the buffering time is over threshold 7', configured by the
operator, the fallback mechanism is triggered. The re-
maining updates are fed into F'B to be transformed to a
feasible sequence, and then Algorithm 1 proceeds with
them again to heuristically maximize update parallelism.
In that way, CCG can always generate a consistent update
sequence, assuming a fallback mechanism exists which
can guarantee the desired invariants." Note that even
with FB triggered, CCG achieves better efficiency than
using F' B alone to update the network, because: 1) in the
common case, most of updates are not handled by FB;
2) CCG only uses FB to “translate” buffered updates and
then heuristically parallelize issuing the output of FB,
but doesn’t wait explicitly as some F'B mechanism does,
e.g., the waiting time between two phases in CU.

To show the feasibility of that approach, we imple-
mented both CU [25] (see §7) and SWAN [13] as our
fallback mechanisms in CCG. We emulated traffic engi-

'If no appropriate fallback exists, and the invariant is non-segment-
independent, CCG can no longer guarantee the invariant. In this case,
CCG can offer a “best effort” mechanism to maintain consistency dur-
ing updates by simply releasing buffered updates to the network after a
configurable threshold of time. This approach might even be preferable
for certain invariants where operators highly value update efficiency;
we leave an evaluation to future work.

USENIX Association

12th USENIX Symposium on Networked Systems Design and Implementation (NSDI "15) 79

(a) No segment crossing, update dif- (b) Old path: A - B — 2 — C, new (¢) Old path: A — 1 — B — C, new (d) Old path: A »— 1 —-B —2—C,

ferent segments in parallel, as long path: A -2 — B — C. New AB
as each segment’s updating follows crosses old BC, so AB depends on
downstream dependency BC

path: A —- B — 1 — C. New BC new path: A -2 =B —=1—C.

crosses old AB, so BC depends on New BC crosses old AB, and new AB

AB crosses old BC, so BC and AB have
circular dependency between them-
selves.

Figure 5: Examples: dependencies between segments. Path AC is divided into two segments AB and BC by three waypoints A,
B, and C, with old paths in solid lines, and new paths in dashed lines.

Algorithm 2 Synthesizing update orderings
ScheduleUpdates(Model,Buf ,U,FB,T)

for u € U do
ScheduleIndividualUpdate(Model, Buf , u)

On timeout(7):

U = Translate(Buf, FB)

for u € U do
ScheduleIndividualUpdate(Model, Buf , u)

neering (TE) and failure recovery (FR), similar to Diony-
sus [15], in the network shown in Figure 6. Network up-
dates were synthesized to preserve congestion-freeness
using CCG (with SWAN as plug-in), and for compari-
son, using SWAN alone. In the TE case, we changed the
network traffic to trigger new routing updates to match
the traffic. In the FR case, we turned down the link S3-
S8 so that link S1-S8 was overloaded. Then the FR ap-
plication computed new updates to balance the traffic.
The detailed events that occurred at all eight switches
are depicted in Figure 7. We see that CCG ensured the
same consistency level, but greatly enhanced parallelism,
and thus achieved significant speed improvement (1.95 x
faster in the TE case, and 1.97 x faster in the FR case).

Figure 6: Topology for CCG and SWAN bandwidth tests
6 Implementation

We implemented a prototype of CCG with 8000+ lines
of C++ code. CCG is a shim layer between an SDN con-
troller and network devices, intercepting and scheduling
network updates issued by the controller in real time.

CCG maintains several types of state, including
network-wide data plane rules, the uncertainty state of
each rule, the set of buffered updates, and bandwidth in-
formation (e.g., for congestion-free invariants). It stores
data plane rules within a multi-layer trie in which each
layer’s sub-trie represents a packet header field. We de-
signed a customized trie data structure for handling dif-
ferent types of rule wildcards, e.g., full wildcard, subnet
wildcard, or bitmask wildcard [24], and a fast one-pass
traversal algorithm to accelerate verification. To han-
dle wildcarding for bitmasks, each node in the trie has

three child branches, one for each of {0, 1, don’t care}.
For subnetting, the wildcard branch has no children, but
points directly to a next layer sub-trie or a rule set. Thus,
unlike other types of trie, the depth of subnet wildcard
tries is not fixed as the number of bits in this field, but
instead equals to the longest prefix among all the rules it
stores. Accordingly, traversal cost is reduced compared
with general tries. For full wildcard fields, values can
only be non-wildcarded or full wildcarded. The special-
ized trie structure for this type of field is a plain binary
tree plus a wildcard table.

When a new update arrives, we need to determine the
set of affected ECs, as well as the rules affecting each
EC. VeriFlow [18] performs a similar task via a two-
pass algorithm, first traversing the trie to compute a set of
ECs, and then for each of the discovered ECs, traversing
the trie again to extract related rules. In CCG, using call-
back functions and depth first searching, the modeling
work is finished with only one traversal. This algorithm
eliminates both the unnecessary extra pass over the trie
and the need to allocate memory for intermediate results.

In addition to forwarding rules, the data structure and
algorithm are also capable of handling packet trans-
formation rules, such as Network Address Translation
(NAT) rules, and rules with VLAN tagging, which are
used by CU for versioning, and verified by CCG when
the CU plug-in is triggered (see §7).

To keep track of the uncertainty states of rules, we de-
sign a compact state machine, which enables CCG to de-
tect rules that cause potential race conditions. If desired,
our implementation can be configured to insert barrier
messages to serialize those rule updates.

To bound the amount of time that the controller is
uncertain about network states, we implemented two
alternate types of the confirmation mechanisms: (1)
an application-level acknowledgment by modifying the
user-space switch program in Mininet, and (2) leverag-
ing the barrier and barrier reply messages for our physi-
cal SDN testbed experiments.

CCG exposes a set of APIs that can be used to write
general queries in C++. The APIs allow the network op-
erator to get a list of affected equivalence classes given an
arbitrary forwarding rule, the corresponding forwarding
graphs, as well as traverse these graphs in a controlled
manner and check properties of interest. For instance,
an operator can ensure packets from an insecure source

80 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI "15)

USENIX Association

Figure 7: Time series

/! /

of events that occurred 2 " " Z EE Add
across all switches: s m 5 = Mod
(@ SWAN + CCG, ‘31 [- T ‘3‘ [- [T mEmm Del
traffic engineering; (b) %* -l 2 * - m

SWAN, traffic engi- 'g %% 10 207 s00 sw0 s /7 1020 % io " so0 sio s20 1020
neering; (c) SWAN + =, I (@ - / . p (c) /)

CCG, failure recovery; £ z - m z

(d) SWAN, failure ¥ s m 5 I
recovery. In both cases, 3 — 3 F - .
CCG + SWAN finishes 3| |[J—— - W——-] ip N - -

about 2x faster. % 10 20" 00 (b)slo 520 7 0w % d0 7 s00 ,;.10 520 /7 1020

encounter a firewall before accessing an internal server.
7 Evaluation
7.1 Verification Time

To gain a baseline understanding of CCG’s perfor-
mance, we micro-benchmarked how long the verification
engine takes to verify a single update. We simulated BGP
routing changes by replaying traces collected from the
Route Views Project [4], on a network consisting of 172
routers following a Rocketfuel topology (AS 1755) [1].
After initializing the network with 90,000 BGP updates,
2,559,251 updates were fed into CCG and VeriFlow [18]
(as comparison). We also varied the number of concur-
rent uncertain rules in CCG from 100 to 10,000. All ex-
periments were performed on a 12-core machine with In-
tel Core i7 CPU at 3.33 GHz, and 18 GB of RAM, run-
ning 64-bit Ubuntu Linux 12.04. The CDFs of the update

verification time are shown in Figure 8.
|

0.8

0.6

0.4

Fraction of trials

CCG-100 ==
CCG-1000 = ===
CCG-10000 seseseees

VeriFlow
SPETTT RS SRR RTT |

le+06

02!

10000

100000

Microsecond

Figure 8: Microbenchmark results.

CCG was able to verify 80% of the updates within 10
us, with a9 us mean. CCG verifies updates almost two
order of magnitude faster than VeriFlow because of data
structure optimizations (§6). Approximately 25% of the
updates were processed within 1 us, because CCG ac-
curately tracks the state of each rule over time. When a
new update matches the pattern of some existing rule, it’s
likely only a minimum change to CCG’s network model
is required (e.g., only one operation in the trie, with no
unnecessary verification triggered). We observed long
tails in all curves, but the verification time of CCG is
bounded by 2.16 ms, almost three orders of magnitude

Time (milliseconds)

faster than VeriFlow’s worst case. The results also show
strong scalability. As the number of concurrent uncer-
tainty rules grows, the verification time increases slightly
(on average, 6.6 us, 7.3 us, and 8.2 us for the 100-
, 1000-, and 10000-uncertain-rule cases, respectively).
Moreover, CCG offers a significant memory overhead re-
duction relative to VeriFlow: 540 MB vs 9 GB.

7.2 Update Performance Analysis
7.2.1 Emulation-based Evaluation

Segment-independent Policies: We used Mininet to em-
ulate a fat-tree network with a shortest path routing ap-
plication and a load-balancing application in a NOX con-
troller. The network consists of five core switches and
ten edge switches, and each edge switch connects to five
hosts. We change the network (e.g., add links, or mi-
grate hosts) to trigger the controller to update the data
plane with a set of new updates. For each set of exper-
iments, we tested six update mechanisms: (1) the con-
troller immediately issues updates to the network, which
is Optimal in terms of update speed; (2) CCG with the
basic connectivity invariants, loop and black-hole free-
dom, enabled (CCG); (3) CCG with an additional invari-
ant that packets must traverse a specific middle hop be-
fore reaching the destination (CCG-waypoint); (4) Con-
sistent Updates (CU) [25]; (5) incremental Consistent
Updates (Incremental CU) [16]; and (6) Dionysus [15]
with its WCMP forwarding dependency graph genera-
tor. We configure our applications as the same type
as in Dionysus, with forwarding rules matching exactly
one flow, i.e., no overlapping forwarding graphs. Thus,
loop and black-hole freedom are segment-independent as
proved in §5.2. Because of the fat-tree structure, there
is no crossing between path segments (as in Fig 5(a)),
so the waypoint policy is also segment independent. A
mix of old and new configurations, e.g., oldAB + newBC
in Figure 5(a), is allowed by CCG, but forbidden when
using CU. Note here, we used our own implementation
of the algorithms introduced in Dionysus paper, specifi-
cally the algorithm for packet coherence. Therefore, this
is not a full evaluation of the Dionysus approach: one

USENIX Association

12th USENIX Symposium on Networked Systems Design and Implementation (NSDI "15) 81

can develop special-purpose algorithms that build cus-
tomized dependency graphs for weaker properties, and
thus achieve better efficiency. We leave such evaluation
to future work.

We first set the delay between the controller issuing an
update and the corresponding switch finishing the appli-
cation of the update (i.e, the controller-switch delay) to
a normal distribution with 4 ms mean and 3 ms jitter, to
mimic a dynamic data center network environment. The
settings are in line with that of other data center SDN ex-
periments [8,26]. We initialized the test with one core
switch enabled and added the other four core switches
after 10 seconds. The traffic eventually is evenly dis-
tributed across all links because of the load balancer ap-
plication. We measured the completion time of updating
each communication path, repeated each experiment 10
times. Figure 9(a) shows the CDFs for all six scenarios.

The performance of both “CCG” and “CCG-
waypoint” is close to optimal, and much faster (47 ms
reduction on average) than CU. In CU, the controller is
required to wait for the maximum controller-switch delay
to guarantee that all packets can only be handled by ei-
ther the old or the new rules. CCG relaxes the constraints
by allowing a packet being handled by a mixture of old
and new rules along the paths, as long as the impact of
the new rules passed verification. By doing so, CCG can
apply any verified updates without explicitly waiting for
irrelevant updates. CU requires temporary doubling of
the FIB space for each update, because it does not delete
old rules until all in-flight packets processed by the old
configuration have drained out of the network. To ad-
dress this, incremental-CU was proposed to trade time
against flow table space. By breaking a batch of updates
into k subgroups (k = 3 in our tests), incremental-CU re-
duced the extra memory usage to roughly one kth at the
cost of multiplying the update time & times. In contrast,
when dealing with segment-independent policies, as in
this set of experiments, CCG never needs to trigger any
heavyweight fallback plug-in, and thus requires no ad-
ditional memory, which is particularly useful as switch
TCAM memory can be expensive and power-hungry.

To understand how CCG performs in wide-area net-
works, where SDNs have also been used [13, 14], we
set the controller-switch delay to 100 ms (normal dis-
tribution, with 25ms jitter), and repeated the same tests
(Figure 9(b)). CCG saved over 200 ms update com-
pletion time compared to CU, mainly due to the longer
controller-switch delay, for which CU and incremental-
CU have to wait between the two phases of updates.

As for Dionysus, we observed in Figure 9 that it speeds
up updates compared to CU in both local and wide-area
settings, as it reacts to network dynamics rather than
pre-determining a schedule. But because its default al-
gorithm for WCMP forwarding produces basically the

0.8 +

0.6 -

04 - CCG-waypoint
Dionysus
Consistent Updates

Incremental CU ===--
1 1

Fraction of trials

02

0 50 100 150 200 250

Millisecond

(a)

ol
........

/ Optimal ===--
CCG oo

Fraction of trials

K Dionysus
Consistent Updates

Incremental CU ===--
] L 1 L 1 L 1

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Millisecond

(b) Wide-area network setting

Figure 9: Emulation results: update completion time com-
parison.

same number of updates as CU, CCG (either CCG or
CCG-waypoint) outperforms it in both time and memory
cost. We further compared CCG-waypoint with Diony-
sus in other dynamic situations, by varying controller-
switch delay distribution. Figure 10 shows the 507, 90"
and 99" percentile update completion time, under vari-
ous controller-switch delays (normal distributed with dif-
ferent (mean, jitter) pairs, (a,b)) for four update mecha-
nisms: optimal, CCG, Dionysus, and CU. In most cases,
both CCG and Dionysus outperform CU, with one ex-
ception (4ms delay, zero jitter). Here, Dionysus does not
outperform CU because it adjusts its schedule accord-
ing to network dynamics, which was almost absent in
this scenario. The cost of updating dependency graphs in
this scenario is relatively large compared to the small net-
work delay. When the mean delay was larger (100ms),
even with no jitter, Dionysus managed to speed the tran-
sition by updating each forwarding path independently.
On the other hand, CCG’s performance is closer to Opti-
mal than Dionysus. For example, in the (4,0) case, CCG
is 37%, 38%, and 52% faster than Dionysus in the 50",
90" and 99" percentile, respectively; in the (100,25)
case, CCG is 50%, 50%, and 53% faster than Dionysus
in the 50", 90" and 99" percentile, respectively. Also,
we observe that Dionysus’s performance is highly depen-
dent on the variance of the controller-switch delay (the
larger the jitter is, the faster the update speed) because of
the dynamic scheduling, but CCG’s performance is in-
sensitive to the jitter.

Non-segment-independent Policies: ~ We then explored

82 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI "15)

USENIX Association

600

é 500 OOptimal

'; - OCCG-waypoint
g g 400 1o

- ionysus

2 8 300 . !

3 2 200 Consistent Updates
8 E

2 =

©

o

=)

“ afl Tl
o + : : :

{40 {43} {100,0} {100, 25}
Figure 10: Update completion time with [50'", 90", 99" per-
centile]; x-axis label {a, b}: a is the mean controller-switch
delay, b is the jitter following a normal distribution.

scenarios in which CCG’s lightweight heuristic cannot
always synthesize a correct update ordering and needs
to fall back to the more heavyweight algorithm to guar-
antee consistency. The traces we used were collected
from a relatively large enterprise network that consists of
over 200 layer-3 devices. During a one-day period (from
16:00 7/22/2014 to 16:00 7/23/2014), we took one snap-
shot of the network per hour, and used Mininet to emu-
late 24 transitions, each between two successive snap-
shots. We processed the network updates with three
mechanisms: immediate application of updates, CCG,
and CU. Updates were issued such that new rules were
added first, then old rules deleted. Thus, all three mech-
anisms experience the trend that the number of stored
rules increases then decreases.. The controller-switch
delay was set to 4 ms. We selected 10 strongly con-
nected devices in the network, and plotted the number
of rules in the network over time during four transition
windows, as shown in Figure 11. As the collected rules
overlapped with longest prefix match, the resulting for-
warding graphs might share links, so unlike previous ex-
periments, segment-independency was not guaranteed.

The update completion time (indicated by the width
of the span of each curve) using CCG was much shorter
than CU, and the memory needed to store the rules was
much smaller. In fact, the speed and memory require-
ments of CCG were close to those of the immediate up-
date case, because CCG rarely needs to fall back to CU.
In 22 out of 24 windows, there was a relatively small
number of network updates (around 100+), much as in
the [22:00, 23:00) window shown in Figure 11, in which
CCG passed through most of the updates with very few
fallbacks. During the period 23:00 to 1:00, there was a
burst of network dynamics (likely to have been caused
by network maintenance), in which 8000+ network up-
dates occurred. Even for such a large number of updates,
the number of updates forced to a fallback to CU, was
still quite small (10+). Since CCG only schedules up-
dates in a heuristic way, the waiting time of a buffered
update could be suboptimal, as in this hour’s case, where
the final completion time of CCG was closer to CU. CCG
achieves performance comparable to the immediate up-
date mechanism, but without any of its short-term net-

work faults (24 errors in the 0:00 to 2:00 period).
7.2.2 Physical-testbed-based Evaluation

We also evaluated CCG on a physical SDN testbed [3]
consisting of 176 server ports and 676 switch ports, using
Pica8 Pronto 3290 switches via TAM Networks, NIA-
GARA 32066 NICs from Interface Masters, and servers
from Dell. We compared the performance of CCG and
CU by monitoring the traffic throughput during network
transitions. We first created a network with two sender-
receiver pairs transmitting TCP traffic on gigabit links,
shown in Figure 12. Initially, a single link was shared by
the pairs, and two flows competed for bandwidth. After
90 seconds, another path was added (the upper portion
with dashed lines in Figure 12). Eventually, one flow was
migrated to the new path and each link was saturated. We
repeated the experiment 10 times, and recorded the aver-
age throughput in a 100-ms window during the network
changes. We observed repeatable results. Figure 13(a)
shows the aggregated throughput over time for one trial.

CCG took 0.3 seconds less to finish the transition than
CU because: (1) unlike CU, CCG does not require packet
modification to support versioning, which takes on the
order of microseconds for gigabit links, while packet for-
warding is on the order of nanoseconds; (2) CU requires
more rule updates and storage than CCG, and the speed
of rule installation is around 200 flows per second; and
(3) Pica8 OpenFlow switches (with firmware 1.6) cannot
simultaneously process rule installations and packets.’

[___.___.ﬁ_- e]
Sender1 Recénver 1
ender eceiver
Sender 2 é é Receiver 2
|] |]

>4

bottleneck link —,

Figure 12: eight-switch topology.

To test CCG in a larger setting, we then utilized all
13 physical switches. Each physical switch was devided
into 6 “virtual” switches by creating 6 bridges. Due to the
fact that the switches are physically randomly connected,
this division results in a “pseudo-random” network con-
sisting of 78 switches, each with 8 ports. Initially, the
topology consisted of 60 switches, and we randomly se-
lected 10 sender-receiver pairs to transmit TCP traffic.
After 90 seconds, we enabled the remaining 18 switches
in the network. The topology change triggered instal-
lations of new rules to balance load. We repeated the
experiments 10 times, and selected two flows from one
trial that experienced throughput changes (Figure 13(b)).
The trend of the two flows is consistent with the overall
observed throughput change.

CCG again outperformed CU in convergence time and
average throughput during transitions. Compared to CU,
CCG spent 20 fewer seconds to complete the transition
(a reduction of 2/3), because CU waits for confirmation

2 All the performance specifications reported in this paper have been
confirmed with the Pica8 technical team.

USENIX Association

12th USENIX Symposium on Networked Systems Design and Implementation (NSDI "15) 83

25000 1/l

//

g x S ,
S 5 20000 SN 7N
2 / hY ;‘f L"\
Y rd %
o w 15000 / £ \
s K & yj ",

- 2 & . . n N\
8 _g:) 10000 —-e e —'<., &“u?‘ Sl e _‘di
E > \ 5 // Immediate Update * .
S S 5000 N 7 CCG weeeeeeees A Complenon
z N —/ Consistent Updates ° Time

0 // // //

7/22/2014 7/22/2014 7/22/2014 7/22/2014 7/23/2014 7/23/2014 7/23/2014 7/23/2014

22:00:00 22:00:02 23:00:00 23:00:02 0:00:00 0:00:02 1:00:00 1:00:02

Time

Figure 11: Network-trace-driven emulations: (1) immediate application of updates; (2) CCG (with CU as fallback); and (3) CU.
P

[

"
]
]

- ‘.
]

]

A

L7}

I
[
= ~

e
[
1

Throughput (Gbps)
T

CCG ——
Consistent updates
L L

0 J. Il
90 9l 92

93 94

Second

(a) A eight-switch topology.

. . :
'

'

15 | :
'

'

'

| & l '

ST l
H
.
. H
H CCG ——

Throughput (Gbps)

Consistent updates
L 1 Il 1

0 I I 1

95 100 105 110 15 120 125 130

Second

(b) A 78-switch network.

Figure 13: Physical testbed results: comparison of through-
put changes during network transitions for CCG and CU.

of all updates in the first phase before proceeding to the
second. In contrast, CCG’s algorithm significantly short-
ened the delay, especially for networks experiencing a
large number of state changes. In CCG, the through-
put never dropped below 0.9 Gb/s, while CU experienced
temporary yet significant drops during the transition, pri-
marily due to the switches’ lack of support for simulta-
neous application of updates and processing of packets.

8 Discussion

Limitations: CCG synthesizes network updates with
only heuristically maximized parallelism, and in the
cases where required properties are not segment inde-
pendent, relies on heavier weight fallback mechanisms
to guarantee consistency. When two or more updates
have circular dependencies with respect to the consis-
tency properties, fallback will be triggered. One safe way
of using CCG is to provide it with a strong fallback plug-
in, e.g., CU [25]. Any weaker properties will be auto-
matically ensured by CCG, with fallback triggered (rare
in practice) only for a subset of updates and when nec-
essary. In fact, one can use CCG even when fallback is
always on. In this case, CCG will be faster most of the
time, as discussed in §5.3.

Related work: Among the related approaches, four
warrant further discussion. Most closely related to our
work is Dionysus [15], a dependency-graph based ap-
proach that achieves a goal similar to ours. As discussed
in §2, our approach has the ability to support 1) flexible
properties with high efficiency without the need to im-
plement new algorithms, and 2) applications with wild-
carded rules. [22] also plans updates in advance, but us-
ing model checking. It, however, does not account for
the unpredictable time switches take to perform updates.
In our implementation, CU [25] and VeriFlow [18] are
chosen as the fallback mechanism and verification en-
gine. Nevertheless, they are replaceable components of
the design. For instance, when congestion freedom is the
property of interest, we can replace CU with SWAN [13].

Future work: We plan to study the generality of seg-
ment independent properties both theoretically and prac-
tically, test CCG with more data traces, and extend its
model to handle changes initiated from the network. As
comparison, we will test CCG against the original im-
plementation of Dionysus with dependency graphs cus-
tomized to properties of interest. We will also investi-
gate utilizing possible primitives in network hardware to
facilitate consistent updates.

9 Conclusion

We present CCG, a system that enforces customizable
network consistency properties with high efficiency. We
highlight the network uncertainty problem and its ramifi-
cations, and propose a network modeling technique cor-
rectly derives consistent outputs even in the presence of
uncertainty. The core algorithm of CCG leverages the
uncertainty-aware network model, and synthesizes a fea-
sible network update plan (ordering and timing of control
messages). In addition to ensuring that there are no vi-
olations of consistency requirements, CCG also tries to
maximize update parallelism, subject to the constraints
imposed by the requirements. Through emulations and
experiments on an SDN testbed, we show that CCG is
capable of achieving a better consistency vs. efficiency
trade-off than existing mechanisms.

We thank our shepherd, Katerina Argyraki, for helpful
comments, and the support of the Maryland Procurement
Office under Contract No. H98230-14-C-0141.

84 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI "15)

USENIX Association

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

Rocketfuel: An ISP topology mapping en-
gine. http://www.cs.washington.edu/
research/networking/rocketfuel/.

Tech report. http://web.engr.illinois.
edu/~wzhoulO/gcc_tr.pdf.

University of illinois ocean testbed.

http://ocean.cs.illinois.edu/.

University of Oregon Route Views Project. http:
//www.routeviews.org/.

E. Al-Shaer and S. Al-Haj. FlowChecker: Config-
uration analysis and verification of federated Open-
Flow infrastructures. In SafeConfig, 2010.

T. Benson, A. Anand, A. Akella, and M. Zhang.
Microte: Fine grained traffic engineering for data
centers. CoNEXT, 2011.

M. Canini, D. Venzano, P. Peresini, D. Kostic, and
J. Rexford. A NICE way to test OpenFlow applica-
tions. In NSDI, 2012.

A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagan-
dula, P. Sharma, and S. Banerjee. DevoFlow: Scal-
ing flow management for high-performance net-
works. In ACM SIGCOMM Computer Communi-
cation Review, volume 41, pages 254-265. ACM,
2011.

T. Flach, N. Dukkipati, A. Terzis, B. Raghavan,
N. Cardwell, Y. Cheng, A. Jain, S. Hao, E. Katz-
Bassett, and R. Govindan. Reducing web latency:
the virtue of gentle aggression. In SIGCOMM,
2013.

J. Fu, P. Sjodin, and G. Karlsson. Loop-free up-
dates of forwarding tables. IEEE Transactions on
Network and Service Management, March 2008.

A. Guha, M. Reitblatt, and N. Foster. Machine-
verified network controllers. Programming Lan-
guages Design and Implementation, 2013.

B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiak-
oumis, P. Sharma, S. Banerjee, and N. McKeown.
ElasticTree: Saving energy in data center networks.
In NSDI, volume 3, pages 19-21, 2010.

C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang,
V. Gill, M. Nanduri, and R. Wattenhofer. Achieving
high utilization with software-driven WAN. ACM
SIGCOMM, 2013.

[14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,
A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu,
et al. B4: Experience with a globally-deployed
software defined WAN. In ACM SIGCOMM, pages
3-14. ACM, 2013.

X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Ma-
hajan, M. Zhang, J. Rexford, and R. Wattenhofer.
Dynamic scheduling of network updates. In ACM
SIGCOMM, 2014.

N. P. Katta, J. Rexford, and D. Walker. Incremental
consistent updates. HotSDN, 2013.

P. Kazemian, M. Chang, H. Zeng, G. Varghese,
N. McKeown, and S. Whyte. Real time network
policy checking using header space analysis. In
NSDI, 2013.

A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B.
Godfrey. VeriFlow: Verifying network-wide invari-
ants in real time. In NSDI, 2013.

H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Watten-
hofer, and D. Maltz. zUpdate: Updating data center
networks with zero loss. ACM SIGCOMM, 2013.

A. Ludwig, M. Rost, D. Foucard, and S. Schmid.
Good network updates for bad packets: Way-
point enforcement beyond destination-based rout-
ing policies. HotNets, 2014.

R. Mahajan and R. Wattenhofer. On consistent up-
dates in software defined networks. HotNets, 2013.

J. McClurg, H. Hojjat, P. Cerny, and N. Foster. Ef-
ficient synthesis of network updates. Programming
Languages Design and Implementation, 2015. to
appear.

A. Noyes, T. Warszawski, P. Cerny, and N. Foster.
Toward synthesis of network updates. SYNT, 2014.

Open Network Foundation. OpenFlow switch spec-
ification v1.4, October 2013. https://www.
opennetworking.org/.

M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger,
and D. Walker. Abstractions for network update. In
ACM SIGCOMM, 2012.

R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller,
M. Casado, N. McKeown, and G. Parulkar. Can the
production network be the testbed? OSDI, 2010.

L. Shi, J. Fu, and X. Fu. Loop-free forwarding table
updates with minimal link overflow. International
Conference on Communications, 2009.

USENIX Association

12th USENIX Symposium on Networked Systems Design and Implementation (NSDI "15) 85

