
Secure Distribution of Confidential Information via
Self-Destructing Data

JASON CROFT
Boston College

Computer Science Department
Chestnut Hill, MA, 02467

USA
croftj@bc.edu

ROBERT SIGNORILE
Boston College

Computer Science Department
21 Campanella Way, 572, Chestnut Hill, MA, 02467

USA
signoril@bc.edu

Abstract: Control and ownership of data is difficult in any environment and with the increase in electronic data and records, the need
to maintain ownership and control redistribution of data is becoming increasingly important. We propose a first-level protection against
unauthorized redistribution using a method of self-destructing, one-time-use data. Transmitted data is encrypted, encapsulated within an
executable, and authenticated to a single user and machine. Once accessed, measures are taken to ensure it cannot be used outside the
executable (e.g., displayed within a non-selectable, non-editable window) and that the executable cannot be easily decompiled. After a
single use, data is destroyed through a method of in-memory compilation of a new executable, which overwrites the original during run-
time. In addition, a time-to-live (TTL) is integrated into the executable to provide an additional layer of security so that the data is only
accessible within a defined time period. The executable is self-sufficient–it requires no network connection, communication with a central
authority, or communication with the sender to authenticate the data since all authentication is integrated into the executable. This provides
universal, environment-neutral protection of the data within any type of transfer, whether via server-client, peer-to-peer (P2P), or through
external storage devices.

Key–Words: Data Security, Computer Networks, Data Retrieval

1 Introduction

Self-destructing data may be the fiction of spy movies like
Mission Impossible, but it has many applications in con-
trolling distribution of data in real world situations. For
example, it can be used to securely distribute confidential
data, with the assurance that no unauthorized distribution of
data will follow. This can be an often overlooked security
weakness because of the difficulty in controlling it. Secure
data transfer is not merely enough for data security–secure
transfer and secure distribution are needed. If Alice wishes
to send a file to Bob, she can encrypt the data to ensure
only Bob can decrypt it. However, once decrypted, Bob
can redistribute it to an unauthorized user Eve, or it could
be susceptible to a data-comprising attack that may result
in Eve obtaining the data. In either case, the confidentiality
of the data is lost.

To mediate this problem, we propose a method of first-
level protection against unauthorized distribution that is
built on self-destructing data. The self-destruction nature
of the data is built on in-memory compilation and data en-
capsulation within executables. When a user distributes
data to another user, the data is authenticated to the receiv-
ing user and then wrapped within an executable Java class
file. Though this method has some restrictions, we propose
methods to mediate any potential problems and strengthen

its security with minimal impact on usability. Our cur-
rent implementation works for data such as text, HTML,
or PDFs, and we leave other types (e.g., videos, music) to
future work. It also relies on a proprietary method to dis-
play data (i.e., a “data viewer”) and control the destruction
of data.

Additionally, this model is completely independent of
any type of data-transfer environment and provides univer-
sal and pervasive protection of confidential data. That is,
data can be protected within any type of network architec-
ture, such as server-client or peer-to-peer (P2P), or even in
the absense of a network, such as data transfer via exter-
nal storage. With authentication built into the executable
rather than requiring a central authority or peers to negoti-
ate authentication, the data is secure across any type of data
transfer.

2 Applications

2.1 HIPAA
Secure distribution has many applications in patient confi-
dentiality under the Health Insurance Portability and Ac-
countability Act (HIPAA) [2]. Especially important are
the Administrative Simplification provisions and the “Stan-
dards for Privacy of Individually Indentifiable Health Infor-
mation” (Privacy Rule), which set standards for electronic



health care transactions and address the security and pri-
vacy of health data. With more and more hospitals us-
ing electronic records, the need for secure distribution of
this information is becoming increasingly important. An-
nas [12] clarifies the three basic rights a patient should have in
keeping medical information private:

• Physicians have an obligation to keep medical information
secret

• Patients are unlikely to disclose intimate details unless their
physician is trusted to keep the information secret

• No entity should have access to records without a patient’s
authorization

Baumer et al. [14] discuss some of the security impli-
cations of electronic records and note, in particular, the is-
sue of unauthorized secondary usage of patient data. In
addition, their survey found a significant concern among
healthcare workers about “inappropriate and unauthorized
access to medical records” and noted that “healthcare
workers take most seriously unauthorized secondary use of
medical information”

2.2 Classified Information
Any type of sensitive information, particularly within the
government sector, could benefit from self-destructing
data. Strong authentication and secured networks can pre-
vent data loss from the outside-in, but without a method
to prevent data loss internally, the overall security is weak-
ened. Any data to be electronically transferred can be au-
thenticated to the users meeting the security clearance, and
both prevents unauthorized use of the data as well as unau-
thorized distribution. In essence, this level of protection
is as important as the need for encryption in maintaining
security of the data.

2.3 Corporate Information
Similarly, sensitive corporate information, such as trade se-
crets, strategic plans, new product information, or merger
information can be secure using our method. This could
potentially prevent any type of unauthorized disclosure or
leaked information. Similarly, the same can apply to copy-
righted material as a form of digital rights management
(DRM) to prevent unauthorized distribution. With a secure
method of distribution, nearly any type of “endpoint data
loss” can be prevented. However, given the design of our
model and the environment-neutral security it provides, it
is not limited to securing data on a corporate network but
also from any type of storage device.

2.4 Pairwise Trust
In our design, we assume some pairwise trust between two
trusted users. That is, we assume a receiving user will not
attempt to maliciously redistribute data. This case applies

to corporate or government information in which the re-
ceiving individual has the appropriate clearance, i.e., s/he
is trusted to use the information properly. The need for
secure distribution in this case is to prevent any type of ac-
cidental loss of data, whether through lost hardware, a ma-
licious third party, or even accidental redistribution. This
gives the receiver some assurance that the executable with
the encapsulated data does not contain a virus or malware.

Nevertheless, our design protects against even a ma-
licious receiver. Whether this receiver is trusted by the
sender but acts maliciously, or is untrusted to the sender
but is still requesting data, the data can still be protected
from redistribution. The need for this type of trusted-but-
insecure security is evident especially in HIPAA-related
confidentiality.

3 Related Work
We could find very little research on self-destructing data,
with most of the emphasis on self-destructing email. The
most concrete example was in a patent for self-destructing
email [27]. In it, the authors describe this design as “au-
tomatically [destroying] documents or email messages at a
predetermined time by attaching a ‘virus’ to the document
or email.”’ However, this differs significantly from our de-
sign, as we focused on less intrusive methods to avoid is-
sues with anti-virus or anti-malware software.

In addition, SafeMessage attempts to control docu-
ment distribution using recipient and status verification,
negotiated single-session encryption, and limited persis-
tence [7]. Confidentiality of the email is ensured by en-
crypting emails to the intended recipient and storing them
on a single SafeMessage server. Upon retrieval, the mes-
sage can be destroyed. VaporStream [9] achieves a similar
goal by separating a messages header and body, storing it
in a temporary buffer, and then removing it once the recip-
ient has retrieved the message. Several other services ex-
ists [3, 8, 10], but all essentially rely on propriety software
on a dedicated server.

In regards to HIPAA compliance, several services have
been examined to enforce privacy and confidentiality of pa-
tient information. Cao’s approach [15] uses a digital en-
velope concept that provides image integrity and security
assurance. This envelope, as well as the digital signature,
is then embedded in the background of the image as an
invisible watermark. A picture archiving and communi-
cation system (PACS) is also used. Yee and Trockman’s
SafeByte [28] is an electronic personal health record that
uses executable software and data files for distributing in-
formation, while Clarke et al. [17] design a Communication
Virtual Machine (CMV) to enforce privacy and security re-
quirements.

Though not focusing on self-destructing data, other
work has taken different approaches to controlling data dis-



tribution by implementing “persistent access control” [20,
13] or using trust-based access control [26, 19, 11]. Mi-
crosoft Office’s Information Rights Management (IRM) [4]
is similar, aimed at preventing an unauthorized user from
forwarding, copying, modifying printing, or pasting con-
tent. It also supports file expiration–similar to self-
destructing data. However, IRM is implemented as a Web
Service for Microsoft enabled products. While these have
their strengths, the dependency on trusted hardware can be
restraining, and as such, we sought to propose another so-
lution. Examples of enterprise software aimed at protecting
against “endpoint-data loss” include NextLab’s Enterprise
DLP Data Protection suite [1], Symantec’s Data Loss Pro-
tection [25], and RSA’s Data Loss Prevention Endpoint [6].

4 Architecture
Our model for secure distribution relies on self-destructing
data, which we achieve through data encapsulation. The
confidential information is stored within an executable Java
class file that renders the data once per authenticated user.
The sender/owner authenticates the data to a single user
and machine to control access to the data. All functionality
to authenticate the receiver is built into the executable, so
no further communication with the sender is required af-
ter distribution. After the first use of the data, the data is
destroyed using a method of in-memory compilation that
overwrites the class file. This combination of authentica-
tion and self-destruction is the key to establishing a first-
level protection of distribution of data.

The goal of this executable is to prevent the receiving
user from:

• Using the data on different machine or using a different user-
name than authenticated

• Redistributing the data to a non-authenticated user/machine

4.1 Data Authentication
All transferred data is encapsulated within an executable
Java class file, such that only the data owner(s) store it
in the original format. Within the executable, the data is
stored as a base64 string. Obfuscation is used to impede
reverse engineering or disassembly. As discussed later, we
used ProGaurd [5] in our proof of concept for obfuscation.
If these authentication factors cannot be checked at run-
time due to security restrictions on the Java Virtual Ma-
chine (JVM), the authentication is assumed to have failed
and the data is destroyed. This two-factor authentication
limits one user on one machine to view the data. Only af-
ter authentication of the user’s MAC address and username
succeeds will the data be decrypted and made viewable.
A hash of the authentication factors is used to decrypt the
data, which is rendered on-screen in a non-editable, non-
selectable region to prevent redistribution through a simple

copy and paste. If the authentication should fail, the data
is not decrypted and the class file is overwritten using in-
memory compilation. The new executable contains none
of the confidential data, so after compilation the data is de-
stroyed.

4.2 Self-Destructing Data

Our method of self-destructing data is less intrusive than
the virus-appended approach in [27]. We use in-memory
compilation to overwrite class files. New source code,
stored as an encrypted string within the executable, is de-
crypted then compiled in-memory. The new source con-
tains none of the original data, but only the functionality
to notify the sender of subsequent policy violations. Given
write privileges on the class file, the Java Virtual Machine
(JVM) will allow this file to be overwritten. This process is
shown in Fig. 1.

In-memory compilation is vital for security of the ap-
plication. If we store the code as a string, decrypt it, then
attempt to compile it from disk, a malicious user can po-
tentially use the knowledge of the source code for exploita-
tion. Even attempting deletion of the source file after com-
pilation presents a security risk as it is nonetheless stored
on disk at some point. In encapsulating the data into the
executable, the goal is to provide the receiver with the min-
imum knowledge needed to consume the data. Using in-
memory compilation, no additional data must be stored
outside of the executable. External information is far more
susceptible to modification by a malicious user than inter-
nal data. Data stored information in registry keys, for ex-
ample, is easier to modify than variables stored within the
class file.

Screenshots of the self-destructing data and in-memory
compilation are shown in Fig. 2. On the right hand side, the
executable is compiled, authenticating the file “Test.txt” to
the current user and machine and then executed. After the
initial compilation, the executable (containing the encap-
sulated data is 59KB. After successful authentication, the
data is rendered on-screen. On the left hand side, the data
viewer is closed and the file size of the executable is shown
as 5KB. After the in-memory compilation during the data
render, the data is destroyed, as evident in the class file
reducing from 59KB to 5KB. When another execution is
attempted, the user is notified that no other views are al-
lowed.

4.3 Current Dependencies and Require-
ments

The data viewer requires several dependencies for full
functionality. Any unmet dependency will result in reduced
security, so we require all be met for the viewer to execute.
First, the client machine requires the current version of the



Figure 1: Data viewer process

Figure 2: Screenshots of the self-destructing data/data viewer

Java Development Kit (JDK), version 6. This release sup-
ports the javax.tools package, which is needed for the
in-memory compilation.

Secondly, write privileges are required on the received
class file. In our test cases, the received class files are given
write privileges for the receiving user. Only after inten-
tionally changing the file permissions was write access re-
voked. We assume a malicious user would use an attack of
this sort to prevent the executable from overwriting itself
and delay data destruction. In this case, the user has the
potential to attempt reverse engineering of the class file to
obtain the data since it cannot be overwritten.

For the in-memory compilation, few restrictions exist.
First, class files have a size limitation. The value of the
file must be less than 64KB [18], as per the JVM class file
specification. Data files larger than this can be split into
multiple strings, stored in separate class files, and then co-
alesced at runtime.

4.4 Security Considerations

The goal of our design is to provide some level of own-
ership over data once an owner has distributed it onto the
network. As such, the decrypted data will be in memory
for the duration the viewer is running. Since data is neither
selectable nor editable, a user cannot copy/paste the data,

but could use a core dump to retrieve the current on-screen
data. A screenshot or screen-capturing software could also
be used to retrieve the data. For large amounts of data,
this is a tedious task. Furthermore, since we assume some
initial pairwise trust between the sender and receiver, the
sender should be able to assume a receiver would not at-
tempt to redistribute the data in this manner.

Reverse engineering of the class file is another consid-
eration. We used ProGuard to obfuscate the class files con-
taining the data, making reverse engineering a more diffi-
cult task. More advanced techniques include [16, 23]. The
class files containing the data could be encrypted during the
transaction, then decrypted at runtime by the class loader.
Though this is not a fully robust and sound solution, it nev-
ertheless provides an additional level of security a mali-
cious peer must overcome.

If an attack potentially knows which authentication
factors are used to authenticate the receiver, the authenti-
cation policy can be circumvented. One possible solution
is random authentication factors. Two random factors of
several possible ones could be used, such as the username,
MAC address, or CPUID. While a malicious user will have
no knowledge of which system properties are being used,
the soundness of the authentication is decreased if one of
the available factors in not incorporated.

One potential attack against the limited-use is filesys-



tem or virtual machine (VM) snapshots. However, we con-
sider circumventing this policy to be only a minor consider-
ation, as the goal of our work is in preventing unauthorized
redistribution. Multiple VM snapshots will still not allow a
user to distribute the secured data to another user.

5 Proof-of-Concept

To demonstrate our proposal, we have implemented a
proof-of-concept content distribution system that utilizes
this self-destructing data model. The content distribution
system allows users securely transfer data across a network,
but prevents this data from being redistributed. We utilized
a P2P overlay for data discovery, allowing users to con-
nect using a application similar to P2P file sharing software
like Gnutella, but used secure, unicast connections for data
transfer.

To prevent distribution of malicious files, such as
viruses or malware concealed as confidential data, all en-
capsulation of data is done by the distribution system.
Sending a file is a simple as selecting a file and user to
send–the encryption, authentication, and transmission are
carried out by our application. A malicious user could at-
tempt to manually send a secure file to another user via
email, but like any file received over email or from some
non-secure source, the receiving user should take caution.
With our design, the automatic generation of the executable
gives some assurance that it is not malicious. For the
limited-use policy, we enforced a one-time-use limitation.

5.1 Network

While our idea is applicable to any type of environment
for data transfer (e.g., client-server network, P2P network,
or transfer via external storage), we chose to implement
it using a P2P network to demonstrate several important
ideas. First, unlike the endpoint data loss protection sys-
tems, there is no need for a central authority. This allows
for use and protection of the data within a user’s network,
outside the network, or without any connection. In addi-
tion, networks with high resource relevance to participants
benefit from the strengths of P2P networks [22].

Our P2P network acts as an overlay on an enterprise
network that requires authentication to join, such as an
internal academic or corporate network. This establishes
some initial trust between users–provided that the network
authentication is sound–since a user’s information cannot
be spoofed. Though not implemented in our proof-of-
concept, another proposed method to prevent spoofing is to
leverage DHCP information. Both the LDAP service and
DHCP information can be used to strengthen the authenti-
cation required for the data.

5.2 Data Transfer

Data discovery is done manually; a user can select the data
they wish to share, and this information is propagated on
the network. However, since we would anticipate large
numbers of users and files, in a more advanced proof-of-
concept this would be done using a distributed hash table,
such as CAN [21] or Chord [24]. When a user needs some
data, s/he requests it from the sender. Then sender has the
option to accept or deny the request. If accepted, a separate
unicast connection is established in addition to the already
existing multicast connection between all peers on the net-
work. The content distribution then uses the receiver’s in-
formation (MAC address and username are discovered at
runtime and then relayed to the sender at the data request)
to compile the executable and send it to the receiving peer.
This allows for minimal work on the sender side to secure
the confidential data.

5.3 Trust
In addition, we chose to incorporate some trust information
about a receiver’s use of the data. Despite the assumed ini-
tial pairwise trust, peers could assess another peer’s trust-
worthiness without any prior first-hand history. We defined
misuse of the data to be:

• Attempted additional usage of the data

• Attempted redistribution of the data

• Failed authentication

Misuse would lower a peer’s trustworthiness while
proper usage would increase it. Attempted redistribution
lowers the trust of both the intended receiver and the third
user receiving the unauthorized data. “Attempted” implies
the user executed the encapsulated data to try to view the
data, but failed because of the security mechanism inte-
grated into the executable. Thus, a user trying to view the
data a second time would merely encounter a warning that
the number of alloted views has been surpassed. To prop-
agate data usage information, we built a feedback mecha-
nism into the executable. If the receiver is connected to a
network during usage of the data, the executable will at-
tempt to reconnect to the content distribution system’s P2P
network and relay the usage information to the sender. We
chose not to enforce network access as a requirement since
it is severely limiting, so we incorporated an additional
timeout for the user’s reappearance on the network under
the assumption that a malicious user would remain discon-
nected from the network until the data could be extracted
from the executable.

6 Conclusions and Future Work
We have implemented a secure method to transfer data
using self-destructing data. This model is data-transfer



neutral, that is, it protects data throughout any type of
electronic data transfer, regardless of network architecture.
Data can be securely distributed in server-client networks,
P2P networks, or via external storage. Due to our use of
Java to create executables, data usage is also platform inde-
pendent and can be transferred between any systems meet-
ing the requirements described earlier. We have demon-
strated the ability to restrict access of data to authorized
users and limit the time it is available as an additional
method of security.

While this current implementation may succeed in pre-
venting unauthorized data distribution, it does so with a
read-only limitation. Allowing outright write-access is dif-
ficult due to a method of storing these changes locally. One
idea we propose is annotations and requests for deletion.
If Alice sends a file to Bob, Alice would have the ability
to add annotations to the data and mark areas for deletion.
This must be done with care as the data viewer must still
be non-selectable and non-editable to prevent copy-and-
pasting of the data outside the viewer. We would like to
increase the usability of this concept from text-based data
to other types of data and media. Our current design relies
on a proprietary method to view the data, which imposes
some limitations on its use. First, we hope to extend our
idea to other data formats. Once this is done, we would like
to determine a method of using this model without the need
for proprietary software. That is, data can be viewed using
the default application, but still retain its self-destructing
security.

References:

[1] Endpoint Data Loss Prevention.
http://www.nextlabs.com/html/?q=endpoint-data-loss-
prevention.

[2] Health information privacy.
http://www.hhs.gov/ocr/privacy/index.html.

[3] Kicknotes self-destructing email.
http://www.kicknotes.com/.

[4] Microsoft office information rights management(irm).
http://www.microsoft.com/ windowsserver2003/techinfo/
overview/rmenterprisewp.mspx.

[5] Proguard. http://proguard.sourceforge.net/.

[6] RSA Data Loss Prevention (DLP) Endpoint.
http://www.rsa.com/node.aspx?id=3429.

[7] Safemessage. http://www.safemessage.com/.

[8] Self destructing email. http://www.self-destructing-
email.com/.

[9] Vaporstream. https://www.vaporstream.com/.

[10] Zmail basic. https://zsentry.com/zmail/.

[11] W.J. Adams and IV Davis, N.J. Toward a decentralized
trust-based access control system for dynamic collaboration.
pages 317–324, June 2005.

[12] George J. Annas. Hipaa regulations - a new era of
medical-record privay. New England Journal of Medicine,
384:1486–1490, April 10 2000.

[13] Alapan Arnab and Andrew Hutchison. Persistent access
control: a formal model for DRM. pages 41–53, 2007.

[14] David Baumer, Julia Brande Earp, and Fay Cobb Payton.
Privacy of medical records: It implications of hipaa. SIG-
CAS Comput. Soc., 30(4):40–47, 2000.

[15] F. Cao. Medical image security in a hipaa mandated pacs
environment. Computerized Medial Imaging and Graphics,
27(2-3):185–196, June 2003.

[16] Jien-Tsai Chan and Wuu Yang. Advanced obfuscation tech-
niques for java bytecode. J. Syst. Softw., 71(1-2):1–10, 2004.

[17] Vagelis Hristidis, Peter J. Clarke, Nagarajan Prabakar,
Yi Deng, Jeffrey A. White, and Redmond P. Burke. A flex-
ible approach for electronic medical records exchange. In
HIKM ’06: Proceedings of the international workshop on
Healthcare information and knowledge management, pages
33–40, New York, NY, USA, 2006. ACM.

[18] Tim Lindholm and Frank Yellin. Java(TM) Virtual Machine
Specification, Second Edition. Prentice Hall, 1999.

[19] Xiaoning Ma, Zhiyong Feng, Chao Xu, and Jiafang Wang.
A trust-based access control with feedback. pages 510–514,
May 2008.

[20] Paul B. Schneck. “Persistent Access Control to Prevent
Piracy of Digital Information”. Proceedings of the IEEE,
06/1999.

[21] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard
Karp, and Scott Schenker. A scalable content-addressable
network. In SIGCOMM ’01: Proceedings of the 2001 con-
ference on Applications, technologies, architectures, and
protocols for computer communications, pages 161–172,
New York, NY, USA, 2001. ACM.

[22] Mema Roussopoulos, Mary Baker, David S. H. Rosenthal,
Tj Giuli, and Jeff Mogul. 2 p2p or not 2 p2p. In In IPTPS
04, pages 33–43. Springer, 2004.

[23] Yusuke Sakabe, Masakuzu Soshi, and Atsuko Miyaji. Java
obfuscation approaches to construct tamper-resistent object-
oriented programs. IPSJ Digital Courier, 1:349–361, 2005.

[24] Ion Stoica, Robert Morris, David Karger, Frans M.
Kaashoek, and Hari. Chord: A scalable peer-to-peer lookup
service for internet applications, 2001.

[25] Symantec. Data loss protection.
http://www.symantec.com/business/data-loss-prevention.

[26] Huu Tran, M. Hitchens, V. Varadharajan, and P. Watters.
A trust based access control framework for p2p file-sharing
systems. pages 302c–302c, Jan. 2005.

[27] Howard R. Udell, Cary S. Kappel, William Ries, Stuart D.
Baker, and Greg M. Sherman. Self-destructing document
and e-mail messaging system”. US Patent Number 7191219,
April 12, 2002.

[28] Wai Gen Yee and Brett Trockman. Bridging a gap in the
proposed personal health record. In HIKM ’06: Proceed-
ings of the international workshop on Healthcare informa-
tion and knowledge management, pages 49–56, New York,
NY, USA, 2006. ACM.


