
A Self-Destructing File Distribution System With
Feedback for Peer-to-Peer Networks

Jason Croft
Department of Computer Science

Boston College
Email: croftj@bc.edu

Robert Signorile
Department of Computer Science

Boston College
Email: signoril@bc.edu

Abstract—Maintaining control and ownership of data is diffi-
cult in any network environment. In peer-to-peer P2P networks,
without a central authority to control access to data, other media-
tions must be proposed. We propose a method to control distribu-
tion of data in P2P networks through the use of a feedback-based,
restrictive content distribution system. Unauthorized distribution
is thwarted through a method of self-destructing, one-time-use
data. Transmitted data is encrypted, encapsulated within an
executable, and authenticated to a single user and machine.
Once accessed, measures are taken to ensure it cannot be used
outside the executable (e.g., displayed within a non-selectable,
non-editable window) and that the executable cannot be easily
decompiled. After a single use, data is destroyed through a
method of in-memory compilation of a new executable which,
during run-time, overwrites the original. Methods to prevent
overwriting, such as removing write privileges, are treated as
misuse of the data. Misuse of data, or unsatisfactory transactions,
negatively affect a peer’s trust on the network. Misuse can include
failed authentication, unauthorized multiple uses, or attempted
distribution of the data. The executable provides feedback to
the sender based on this usage so trust values can be adjusted
accordingly. We assume some pair-wise trust, and place emphasis
on these pair-wise interactions. To compute trust values, we
determiend that the most efficient approach, given the emphasis
on each individual pair-wise transaction, is a modified Bayesian
approach with weight given towards information gathered first-
hand.

I. INTRODUCTION

Peer-to-peer (P2P) networks present many advantages over
typical client-server networks. These networks are more scal-
able, lack a single point of failure, and are typically less
expensive to deploy. However, like any type of network,
ownership of data is not easily managed once it is distributed
to another user on the network. That is, peer i cannot ensure
that a file sent to peer j will not be maliciously distributed
to peer k. Peer i can use encryption to ensure only j can
initially decrypt file, but once decrypted, j can send it to
whomever it wishes. This is an essential part of the problem
encountered in digital rights management (DRM). Solving
this is more difficult in P2P networks than traditional server-
client networks because of the lack of a central node with
which to regulate file access. Previous research ([17], [6])
has implemented “persistent access control” in client-server
networks through the use of watermarks, trusted hardware, and
a certification authority. In this paper, we describe a method
of first level protection against unauthorized distribution of

confidential data for P2P networks that uses a feedback-
based content distribution system. Distributed content provides
feedback to the data owners based on the usage of the
transmitted data, which is used to compute trust values of the
data transaction. To compute these trust values, we modified
a Bayesian algorithm.

For our architecture, we have focused primarily on ap-
plications to large enterprise networks that may require au-
thentication. Universities utilizing LDAP authentication would
be one such example, although any environment with the
need for sharing of data would be applicable. Those with
confidential information, in particular, would benefit most
from such control. We define confidential distribution as data
that can be distributed to a peer with the assurance that only
the receiving peer will have the ability to use the data and
cannot redistribute it to an unauthorized one.

We also narrowed our work to the distribution of binary
data, such as text, HTML, or PDF files. Our reasoning for
focusing on these types of data rather than media (e.g., music
or video) is due to the intended use of such an application in
a corporate or enterprise network. The initial file transfer is
assumed to be amongst trusted pairs of peers in the enterprise.
Our protocol is designed to limit confidential data leaking from
the trusted peer after this initial transfer. If there is an effort
(accidentally or deliberately) to electronically send the file to
another peer, the file will be effectively made unusable and
feedback of this event will be provided to the original owner
of the file. In this event, the trustworthiness of the the original
receiving peer will drop (thus, limiting the willingness to share
files with this peer in the future).

II. WHY P2P?

The design of our content distribution system is not reliant
on P2P networks and can be easily adapted for client-server
networks. However, we have chosen to implement it on P2P
networks due to their scalability and to demonstrate that our
idea is possible without requiring central authority. Addition-
ally, the need to share data amongst multiple peers coincides
with the strengths of P2P networks.

Roussopoulos et al., identified three characteristics of these
types of networks: self-organizing, symmetric communication,
and decentralized control [20]. They also describe five char-
acteristics important in assessing the “P2P-worthiness” of dis-

tributed problems: budget, resource relevance to participants,
trust, rate of system change, and criticality. The needs of
our network coincide with the three defined characteristics.
All peer-related information, including trust values or shared
data, is discovered without any global directory. There is
indeed symmetric communication, as a peer both provides
or requests data, and control is completely decentralized in
our environment. Budget is not considered to be an influential
factor in our design, though resource relevance to participants
is important. We assume that peers join the network to request
or share data, so cooperation should evolve without any
additional incentives.

However, Roussopoulos cites mutually distrustive peers
as a factor against P2P networks because of the additional
overhead and need for artificial economies of trading schemes
to incentivize trading. While data sharing is fundamental to
our environment, we believe there should be no additional
incentives to share data, so we do not consider this a factor
against using a P2P solution. Need for data should be the only
purpose behind sharing. Since we are concerned most with
controlled dissemination of needed data, peers should not be
punished for lacking data that is relevant to other peers. Since
they cannot share received data with others, only misuse of
data should be punishable.

Roussopoulos also argues that systems with high rates of
change are best deployed as non-critical applications and quick
changing systems involving critical information would not
benefit from P2P networks. Rate of system change will be
variable: large enterprise networks may have higher rates of
users entering and leaving than a smaller university network.

III. RELATED WORK

Distribution of content on our network is managed using
a combination of authentication and self-destructing data. We
have found one other example of self-destructing data in a
patent for self-destructing emails [23]. The authors describe
this design as “automatically [destroying] documents or email
messages at a predetermined time by attaching a ‘virus’ to the
document or email”’. We focused on a less intrusive method
to avoid issues with anti-virus or anti-malware software.

Examples of enterprise software aimed at protecting against
“endpoint-data loss” include NextLab’s Enterprise DLP Data
Protection suite [1] and RSA’s Data Loss Prevention End-
point [3]. However, these applications require a central con-
troller to manage policies and add additional users.

Some work has proposed solutions to preventing spreading
of malicious or harmful content [22] using trust-based access
control, while other trust-based access control work includes
[16], [5]. However, we have found no work on limiting
data distribution in P2P networks and consider our work
unique. Additionally, we note that our implementation, both
the network application (which manages peer presence and
available data for distribution) and data view are more than
simple proof-of-concepts but fully functional applications. We
believe this can be deployed in an enterprise-level network.

IV. ARCHITECTURE OVERVIEW

We have implemented a two-layer architecture: the first is a
content distribution system that allows one peer to distribute
data to another that can use, or view it, and the second is a
feedback system that provides trust information of peers based
on their usage of data. The main focus of our research is the
self-destructive distribution system. The distribution system
allows a peer to specify the usage of the data, enforcing a one-
time-use (i.e., read) policy. Additionally, it restricts usage by
requiring authentication based on username and MAC address.
Proper use of data increases a peer’s trustworthiness, while
improper use will decrease it. We define improper use of data
as exceeding the set number of uses or a failed authentication,
giving three cases:

• A peer exceeds the one allowed use
• A peer consumes the data on different machine or using

a different username than authenticated
• A peer distributes the data to a non-authenticated

user/machine
The focus of our work is on controlled distribution of

confidential data in an enterprise-wide architecture. The data
is a one-time use file that can only be accessed on the trusted
peer’s site (the original receiver of the file). If access is on
a unauthorized site, the file self-destructs. To gain feedback
on how the data is used (i.e. propagated in the enterprise), we
examined several pre-existing reputation systems and methods
for computing trust values, including work by Buchegger
and Boudec [9], Cornelli et al. [11], Gupta et al. [12], and
EigenTrust [14]. We use a modified Bayesian approach for
trust feedback.

This gives a narrow scope, but because other P2P-related
work can be leveraged to create a fully robust environment
(i.e., work related to authentication, data discovery, scalability,
and fault-tolerance), this scope is not impractical. We assume
some pair-wise trust, especially between the initial pair of
peers (the initial sender/receiver pair). Remember, the goal
of this system is to allow confidential data to be shared via
one hop, but then limit the propagation of this data beyond the
initial pairing. For example, peer i may trust peer j, but peer i
has no understanding of any other peers that j may trust. Thus,
a confidential file passed between peer i and peer j should not
go further than peer j.

V. CONTENT DISTRIBUTION SYSTEM

The design of the distribution system relies on data encap-
sulation. That is, data is stored withing an executable class file
that renders the data once per authenticated peer. The owner
and sender of the data sets the authenticated peer and machine.
In addition to controlling access to this data, the data viewer
also notifies the sender of usage of data. If peer i sends a file to
peer j, i is notified once j views the data, if the authentication
failed, or if another peer attempted to use the data. Upon
the first usage, the data is destroyed using method of self-
destructing data. This combination of authentication and self-
destruction is the key to establishing first level protection and
limitations on distribution of data on the network.

Fig. 1. Screenshots of the self-destructing data/data viewer

A. Data Authentication

Any data received by a peer will be encapsulated within
an executable Java class file. Only the owner(s) of data will
have the data in its original format. Data is stored within
the class file as an encrypted string (specifically, a base64
string) and the class file is obfuscated to make disassembly
or reverse engineering difficult. In our proof of concept, we
utilized ProGuard [2]. The data is only displayed after the
peer’s username and MAC address match those set by the data
transaction. This information is gathered once a peer joins the
network and is set automatically to prevent spoofing or easily
impersonating another peer.

This two-factor authentication limits one peer on one ma-
chine to view the data. If authenticated, the data is then
decrypted using a hash of these same two factors. If the
authentication fails and the peer is on the network, the sender
is notified of this failure. The class file is then overwritten
to destroy the data using in-memory compilation. The new
executable only contains the functionality to notify the sender
of subsequent, unauthorized view attempt. This allows the
sender to decrease the receiver’s level of trustworthiness. This
feedback is essential to updating a peer’s trust value on the
network. Once the data is decrypted, the data is rendered on-
screen in a non-editable, non-selectable region to prevent it
from being copied.

B. Self-Destructing Data

The one-time-use policy is enforced through self-destructing
data. Our method of self-destructing data is less intrusive
than the virus-appended approach in [23]. We use in-memory
compilation to overwrite class files. New source code, stored
as an encrypted string within the executable, is decrypted then
compiled in-memory. The new source contains none of the
original data, but only the functionality to notify the sender
of subsequent policy violations. Given write privileges on the
class file, the Java Virtual Machine (JVM) will allow this file
to be overwritten. This process is shown in Fig. 2.

In-memory compilation is vital for security of the applica-
tion. If we store the code as a string, decrypt it, then attempt

to compile it from disk, a malicious peer can potentially
use the knowledge of the source code for exploitation. Even
attempting deletion of the source file after compilation presents
a security risk, as it is nonetheless stored on disk at some
point. In encapsulating the data into the executable, the goal
is to provide the receiver with the minimum knowledge
needed to consume the data. Using in-memory compilation,
no additional data must be stored outside of the executable.
External information is far more susceptible to modification by
a malicious peer than internal data. Data stored information in
registry keys, for example, is easier to modify than variables
stored within the class file.

The in-memory compilation is accomplished using
the Java package javax.tools.ToolProvider’s
getSystemJavaCompiler() and javax.tools.
SimpleJavaFileObject [13]. An example of this code
is shown in Fig. 3, and screenshots of the self-destructing
data and in-memory compilation are shown in Fig. 1. Note
after the first execution of the class file, the data is destroyed
and the file size reduces from 59KB to 5KB.

C. Dependencies and Limitations

The data viewer requires several dependencies for full
functionality. Any unmet dependency will result in reduced
security, so we require all be met for the viewer to execute.
First, the client machine requires the current version of the
Java Development Kit (JDK), version 6. This release supports
the javax.tools package, which is needed for the in-
memory compilation.

Secondly, write privileges are required on the received
class file. In our test cases, the received class files are given
write privileges for the receiving peer. Only after intentionally
changing the file permissions was write access revoked. We
assume a malicious peer would use an attack of this sort to
prevent the executable from overwriting itself and delay data
destruction.

Thus, given these unmet requirements, the viewer will
notify the sender of this issue. In the second case, a peer
has the potential to attempt reverse engineering of the class

Fig. 2. Data viewer process

import javax.tools.*;
import javax.JavaCompiler.CompilationTask;
import javaxtools.JavaFileObject.*;
import java.io.StringWriter;
class Compiler {
public void compile(String code) throws Exception {
JavaCompiler javac = ToolProvider.

getSystemJavaCompiler();
JavaFileObject file = new

JavaSourceFromString("NewClass",
write.toString());

Iterable<? extends JavaFileObject>
compilationUnit = Array.asList(file);

PrintWriter out = new
PrintWriter(new StringWriter());

out.println(code);
out.close();
CompilationTask task = jc.getTask(null, null, null,

null, null, compilationUnits);
task.call();

}
class JavaSourceFromString
extends SimpleJavaFileObject {
final String code;
JavaSourceFromString(String name, String code) {
super(URI.create("string:///"

+ name.replace(’.’,’/’)
+ Kind.SOURCE.extension, Kind.SOURCE);

this.code = code;
}
@Override
public CharSequence getCharContent

(boolean ignoreEncodingErrors){
return code;

}
}

}

Fig. 3. In-memory compilation

file to obtain the data since it cannot be overwritten. How-
ever, since each execution notifies the sender, the receiver’s
trust can be reduced under the assumption some malicious
action is being attempted. We must also consider compli-
cations during the overwrite. Perhaps the encrypted source
code may become corrupted or fails to compile. In these
cases, the class file is deleted but the receiver’s trust is not
affected. Two methods of file deletion are attempted, first
a simple java.util.File.delete(). This may fail,
so java.util.File.deleteOnExit() is attempted,
which uses Java level shutdown hooks to mark the file for
deletion.

Another potential requirement is network access. We chose
not to enforce network access to allow offline usage of the
data. Requiring access would severely limit the availability of

the data and would reduce the viewer to nothing more than
an online browser application. Our goal is to limit distribu-
tion of data without any significantly limiting requirements.
Remember, the intent of our protocol is to protect third party
access to confidential data. The original transfer is based on a
trusted pair peer session. We protect the integrity of the data
from being transferred beyond this pair-wise trust relationship.
One mediation we propose is a time-to-live policy that can
be set by the sender and enforced by the data viewer. We
assume each TTL can be customized for each transaction, or
set to an infinite amount of time. If the peer does not return
to the network and consume the data prior to the TTL, his
trustworthiness is decreased. For each TTL interval in which a
peer does not respond, his trustworthiness is further decreased.
An infinite TTL can be used in the case that a peer plans
to consume the data offline, which can be arranged with the
sender during the transaction. We assume that a peer will
only request data when he requires it, or before he leaves
the network, so a TTL is not a severely limiting requirement.

For the in-memory compilation, few restrictions exist.
First, class files have a size limitation. The value of the
code_length attribute in the code_attribute structure
must be less than 65536 [15], as per the JVM class file
specification. Data files larger than this can be split into mul-
tiple strings, stored in separate class files, and then coalesced
at run-time. Additionally, given this 64KB limit, there are
no significant restrictions due to memory limitations when
compiling the source files in memory.

D. Security Considerations

Keeping in mind that our system is designed to protect
accidental or malicious electronic propagation, the goal of our
design is to provide some level of ownership over data once
an owner has distributed it onto the network. As such, the
decrypted data will be in memory for the duration the viewer
is running. Since data is neither selectable nor editable, a peer
cannot copy/paste the data, but could use a core dump to
retrieve the current on-screen data. A screenshot or screen-
capturing software could also be used to retrieve the data. For
large amounts of data, this is a tedious task.

Reverse engineering of the class file is another considera-
tion. We used ProGuard to obfuscate the class files containing

the data, making reverse engineering a more difficult task.
More advanced techniques include [10], [21]. The one-time-
use policy also makes reverse engineering difficult. Since the
sensitive data is overwritten during use, the malicious peer has
one attempt at this task.

The use of virtual machines (VM) complicates the use of
self-destructing files. For example, multiple snapshots of a VM
would seem to allow multiple views of the data. This may
seem to circumvent a safeguard of the system (the one time
use restriction); it does not circumvent the goal of our protocol
which is to restrict the propagation of confidential files in a
network. The trusted peer receiver may have created a way
to view the file several times, but if the file is transmitted to
another peer (accidentally or not), the file is unusable (self
destructed) and the confidentiality is in tact.

VI. REPUTATION MANAGEMENT SYSTEM

Trust information is propagated on the network using a
reputation management system. All feedback is performed
automatically–peers do not have the ability to vote on the
type of transaction. To compute trust values, we focused
two different algorithms: EigenTrust [14] and Buchegger and
Boudec’s Bayesian approach [9], with some modifications to
the second to meet the needs for our network. Though each
has its strengths and trade-offs in our environment, we expect
the Bayesian approach, with weight given towards first-hand
information, to yield the best results.

A. Bayesian Approach

1) Background: Buchegger and Boudec’s approach stores
two ratings about peers: a reputation rating that represents the
opinion of a peer’s behavior “as an actor in the base system”
and a trust rating that represents a peer’s behavior “as an actor
in the reputation system.” Peer i stores reputation ratings about
peer j as Ri,j and trust ratings as Ti,j . First-hand information
is stored as Fi,j . The distribution Beta(α, β) is used for the
prior in the Bayesian framework, and first-hand information
is computed using s as observed misbehaviors and u as the
discount factor:

α := uα + s (1)

β := uβ + (1− s) (2)

Buchegger and Boudec propose that u = 1 − 1
m where m is

“the order of magnitude of observations...to assume stationary
behavior.” The reputation rating Ri,j is defined by (α′, β′),
with α′ and β′ calculated in a similar manner as above. For
reputation ratings published by other peers, a peer i updates
first-hand information Fi.j from a trustworthy peer k with
small positive constants w [7], [8]:

Ri,j := Ri,j + wFk,j (3)

Peer k is determined to be trustworthy according to Eq. 8.
If peer i determines k is untrustworthy, the second-hand
information is not used. If untrustworthy, a deviation test is
computed given Fk,j = (αF , βF) and Ri,j = (α, β):

|E(Beta(αF , βF))− E(Beta(α, β))| ≥ d (4)

with d serving as the deviation threshold. The trust rating Ti,k

is calculated using:
γ := vγ + s (5)

δ := vδ + (1− s) (6)

with discount factor v and s = 1 if the deviation test succeeds.
Finally, behavior can be classified using:{

normal if E(Beta(α′, β′)) < r
normal if E(Beta(α′, β′)) ≥ r

(7)

and trustworthiness using:{
trustworthy if E(Beta(γ′, δ′)) < t
untrustworthy if E(Beta(γ′, δ′)) ≥ t

(8)

with r and t serving as expressions of tolerance.
2) Application: We propose several modification to

Buchegger and Boudec’s work to tailor it to our environment.
First, we eliminate decay of values during periods of inactivity
(using α := uα and β := uβ). However, we retain the use
of the discount factor as a fading mechanism to give weight
to more recent transactions. We chose to eliminate decay
during inactivity for the same reason we do not leverage any
trading schemes to increase trading, but with a small rate of
decay. We reason that data is only transferred on an as-needed
basis, which may include large periods of inactivity for some
users, so a decay during periods of inactivity is not practical.
Untrustworthy peers should only become more trustworthy
with proper use of data, not time.

We also keep the reputation and trust ratings as continuous
variables, giving each user some real-valued rating, as opposed
to the discrete ratings with thresholds r and t in the original
algorithm.

B. Analysis

Though both EigenTrust and Buchegger and Boudec’s work
are aimed at P2P networks, they have noticeably different
approaches. EigenTrust converges to the left principal eigen-
vector so peer i will have the same view of any other peer
on the network as peer j. The Bayesian approach, with more
emphasis on first-hand information, provides different opinions
of peers for each based on their interaction with other peers.
Given the emphasis on pair-wise interactions in our network,
we believe this be the best algorithm for our design.

To prove this, we ran a simulation of 1000 data transfers
between three peers. Comparing a larger number of users may
be preferable to determine the effects of malicious collectives
or other attacks, but to analyze the effectiveness of the
algorithms for our design, we chose to focus on a smaller
user base. Additionally, since our design emphasizes pair-
wise interactions, three users is appropriate as we can note
the differences in views of different peers based on first- or
second-hand information.

The results confirm several of the weaknesses in the algo-
rithms. The most important being that in EigenTrust, unsat-
isfactory transactions are not counted when normalizing trust
values and could skew reputation values (malicious peers can

seem less so). However, in the Bayesian approach, this is not
the case. Thus, the modified Bayesian approach is appropriate
for our system.

VII. FUTURE WORK

Future work for our design includes further refinement of
the trust algorithms, comparisons to other trust algorithms
(such as those in [4], [12], [19], [18]), and increased flexibility
for the data viewer.

While our current implementation may succeed in prevent-
ing data distribution on a P2P network, it does so with a read-
only limitation. That is, if peer j sends the file to peer i, j
cannot modify the file and return it to i. This is one area we
would like to address in future work. Allowing outright write-
access is difficult due to a method of storing these changes
locally. One idea we propose is annotations and requests for
deletion. If peer i sends a file to j, j would have the ability to
add annotations to the data and mark areas for deletion. This
must be done with care, as the data viewer must still be non-
selectable and non-editable to prevent copy-and-pasting of the
data outside the viewer.

VIII. CONCLUSION

Controlling ownership and access to data in a network
environment is difficult, though nevertheless important for
confidential data. Through self-destructing data and trust val-
ues based on feedback from data usage, we have developed
a method of first-level protection against unauthorized dis-
tribution in P2P networks. We have addressed the security
issues related to this type of self-destructing data and shown
that a Bayesian approach works best for the needs of our
environment.

REFERENCES

[1] Endpoint Data Loss Prevention. http://www.nextlabs.com/html/?q=endpoint-
data-loss-prevention.

[2] Proguard. http://proguard.sourceforge.net/.
[3] RSA Data Loss Prevention (DLP) Endpoint.

http://www.rsa.com/node.aspx?id=3429.
[4] Karl Aberer and Zoran Despotovic. Managing trust in a peer-2-peer

information system. In CIKM ’01: Proceedings of the tenth international
conference on Information and knowledge management, pages 310–317,
New York, NY, USA, 2001. ACM.

[5] W.J. Adams and IV Davis, N.J. Toward a decentralized trust-based
access control system for dynamic collaboration. pages 317–324, June
2005.

[6] Alapan Arnab and Andrew Hutchison. Persistent access control: a formal
model for DRM. pages 41–53, 2007.

[7] James O. Berger. Statistical Decision Theory and Bayesian Analysis.
Springer, Second Edition, 1985.

[8] Sonja Buchegger. Coping With Misbehavior in Mobile Ad-hoc Networks.
PhD thesis, 2004.

[9] Sonja Buchegger and Jean Y. Le Boudec. A robust reputation system
for p2p and mobile ad-hoc networks. In Proceedings of the Second
Workshop on the Economics of Peer-to-Peer Systems, 2004.

[10] Jien-Tsai Chan and Wuu Yang. Advanced obfuscation techniques for
java bytecode. J. Syst. Softw., 71(1-2):1–10, 2004.

[11] F. Cornelli, E. Damiani, De Capitani, S. Paraboschi, and P. Samarati.
Choosing reputable servents in a p2p network. In Eleventh International
World Wide Web Conference, Honolulu, Hawaii, May 2002.

[12] Minaxi Gupta, Paul Judge, and Mostafa Ammar. A reputation system
for peer-to-peer networks. In Proc. of the 13th Int. workshop on Network
and Operating Systems support for digital audio and video, pages 144–
152, 2003.

[13] JavaCompiler (Java Platform SE 6).
http://java.sun.com/javase/6/docs/api/javax/tools/JavaCompiler.html.

[14] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-molina.
The eigentrust algorithm for reputation management in p2p networks. In
In Proceedings of the Twelfth International World Wide Web Conference,
pages 640–651. ACM Press, 2003.

[15] Tim Lindholm and Frank Yellin. Java(TM) Virtual Machine Specifica-
tion, Second Edition. Prentice Hall, 1999.

[16] Xiaoning Ma, Zhiyong Feng, Chao Xu, and Jiafang Wang. A trust-based
access control with feedback. pages 510–514, May 2008.

[17] Paul B. Schneck. “Persistent Access Control to Prevent Piracy of Digital
Information”. Proceedings of the IEEE, 06/1999.

[18] Asad Amir Pirzada and Chris McDonald. Establishing trust in pure
ad-hoc networks. In ACSC ’04: Proceedings of the 27th Australasian
conference on Computer science, pages 47–54, Darlinghurst, Australia,
Australia, 2004. Australian Computer Society, Inc.

[19] Uwe Roth and Volker Fusenig. Position paper: How certain is recom-
mended trust-information. 2006.

[20] Mema Roussopoulos, Mary Baker, David S. H. Rosenthal, Tj Giuli, and
Jeff Mogul. 2 p2p or not 2 p2p. In In IPTPS 04, pages 33–43. Springer,
2004.

[21] Yusuke Sakabe, Masakuzu Soshi, and Atsuko Miyaji. Java obfuscation
approaches to construct tamper-resistent object-oriented programs. IPSJ
Digital Courier, 1:349–361, 2005.

[22] Huu Tran, M. Hitchens, V. Varadharajan, and P. Watters. A trust based
access control framework for p2p file-sharing systems. pages 302c–302c,
Jan. 2005.

[23] Howard R. Udell, Cary S. Kappel, William Ries, Stuart D. Baker, and
Greg M. Sherman. Self-destructing document and e-mail messaging
system”. US Patent Number 7191219, April 12, 2002.

